ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:408.23KB ,
资源ID:9894929      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9894929.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(数值分析拉格朗日插值法.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数值分析拉格朗日插值法.doc

1、``````````````````````````````````````````` 数值分析拉格朗日插值法 拉格朗日插值的算法设计及应用 【摘要】 本文简介拉格朗日插值,它的算法及程序和拉格朗日在实际生活中的运用。运用了拉格朗日插值的公式,以及它在MATLAB中的算法程序,并用具体例子说明。拉格朗日插值在很多方面都可以运用,具有很高的应用价值。 【关键词】 拉格朗日;插值;公式;算法程序;应用;科学。 一、绪论 约瑟夫·拉格朗日(Joseph Louis Lagrange),法国数学家、物理学

2、家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。数据建模有两大方法:一类是插值方法,另一类是拟合函数一般的说,插值法比较适合数据准确或数据量小的情形。然而Lagrange插值有很多种,1阶,2阶,…n阶。我们可以利用拉格朗日插值求方程,根据它的程序求原方程的图像。下面我具体介绍分析一下拉格朗日插值的算法设计及应用。 二、正文 1、基本概念 已知函数y=f(x)在若干点的函数值=(i=0,1,,n)一个差值问题就是求一“简单”的函数p(x):p()=,i=0,1,,n,

3、 (1) 则p(x)为f(x)的插值函数,而f(x)为被插值函数会插值原函数,,,,...,为插值节点,式(1)为插值条件,如果对固定点求f()数值解,我们称为一个插值节点,f()p()称为点的插值,当[min(,,,...,),max(,,,...,)]时,称为内插,否则称为外插式外推,特别地,当p(x)为不超过n次多项式时称为n阶Lagrange插值。 2、 Lagrange插值公式 (1)线性插值 设已知 , 及=f() ,=f(),为不超过一次多项式且满足=,=,几何上,为过(,),(,)的直线,从而得到

4、 =+(x-). (2) 为了推广到高阶问题,我们将式(2)变成对称式 =(x)+(x). 其中, (x)=,(x)=。均为1次多项式且满足 (x)=1且(x)=0。或(x)=0且(x)=1。 两关系式可统一写成= 。 (3) (2)n阶Lagrange插值 设已知,,,...,及=f()(i=0,1,.....,n),为不超过n次多项式且满足(i=0,1,...n). 易知=(x)+....+. 其中,均为n次多项式且满足式(3)(i,j=0,1,...,n),再由(ji)为n次多项式的n个根知=c.最后,由 c=,i=0,1,.

5、n. 总之,=,=式为n阶Lagrange插值公式,其中,(i=0,1,...n)称为n阶Lagrange插值的基函数。 3,Lagrange插值余项 设,,,...,[a,b],f(x)在[a,b]上有连续的n+1阶导数,为f(x)关于节点,,,...,的n阶Lagrange插值多项式,则对任意x[a,b], 其中,位于,,,...,及x之间(依赖于x),(x)= Eg1:已知函数表sin=0.5000,sin=0.7071,sin=0.8660,分别由线性插值与抛物插值求sin的数值解,并由余项公式估计计算结果的精度。 解:(1)这里有三个节点,线性插值需要两个节点,根据

6、余项公式,我们选取前两个节点,易知: sin()=0.5000+(-) =0.5000+0.2071=0.6381 截断误差, =, 得知结果至少有1位有效数字。 (2) 易知sin 0.7071+=0.8660=0.6434 截断误差为: 得知结果至少有两位数字。 比较本题精确解sin=0.642787609...,实际误差限分别为0.0047和0.00062。 4,Lagrange插值算法和程序 function yy=nalagr(x,y,xx) %用途:Lagrange插值法数值求解;格式:yy=nalagr(x,y

7、xx) %x是节点向量,y是节点上的函数值,xx是插值点(可以多个),yy返回插值 m=length(x);n=length(y); if m~=n,error('向量x与y的长度必须一致');end s=0; for i=1:n t=ones(1,length(xx)); for j=1:n if j~=i t=t.*(xx-x(i))/(x(i)-x(j)); end end s=s+t*y(i); end yy=s; 用以上程序的Eg1的结果为 >> x=pi*[1/6 1/4];y=[0.

8、5 0.7071];xx=2*pi/9; >> yy1=nalagr(x,y,xx) yy1 = -0.5690 >> x=pi*[1/6 1/4 1/3];y=[0.5 0.7071 0.866]; >> yy2=nalagr(x,y,xx) yy2 = 0.8023 >> fplot('sin',[pi/6,pi/3]);hold on; >> plot(x,y,'o',xx,0.6381,'g^',xx,0.6434,'rv');hold off; 图形为 3,Lagrange插值应用 在物理化学,资产价值鉴

9、定工作和计算某一时刻的卫星坐标和钟差等这些方面可以应用Lagrange插值。采用拉格朗日插值法计算设备等功能重置成本,计算精度较高,方法快捷。但是这方法只能针对可比性较强的标准设备,方法本身也只考虑了单一功能参数,它的应用范围因此受到了一定的限制。作为一种探索,我们可以将此算法以及其它算法集成与计算机评估分析系统中,作为传统评估分析方法的辅助参考工具,以提高资产价值鉴定工作的科学性和准确性。 三,结论 拉格朗日插值模型简单,结构紧凑,是经典的插值法。但是由于拉格朗日的插值多项式和每个节点都有关,当改变节点个数时,需要重新计算。且当增大插值阶数时容易出现龙格现象。 参考文献 1, [序号]作者.文章名[J].学术刊物名,年,卷(期):引用部分起—止页. 2,约瑟夫·拉格朗日 3,作者,张玲。文章名,拉格朗日插值在资产评估中的应用。 4,作者,宫厚诚,李全海。文章名,基于IGS精密星历的卫星坐标和钟差插值。 5,作者,吴法伦,赵占芬。文章名,利用计算机绘制物理化学实验中的曲线——拉格朗日插值 附录

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服