ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:204.50KB ,
资源ID:9892441      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9892441.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(三次采油技术及其在各油田应用情况周志军模板.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

三次采油技术及其在各油田应用情况周志军模板.doc

1、资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 三次采油技术及其在各油田应用情况 1三次采油使油田开发进入新阶段[7] 20世纪40年代以前,油田开发主要是依靠天然能量消耗开采,一般采收率仅5%~10%,我们称为一次采油。它反映了早期的油田开发技术水平较低,使90%左右的探明石油储量留在地下被废弃。随着渗流理论的发展,达西定律应用于油田开发。人们认识到油井产量与压力梯度呈正比关系,一次采油采收率低的主要因素是油层能量的衰竭,从而提出了人工注水(气),保持油层压力的二次采油方法,使油采收率提高到30%~40%。这是至今世界上各油田的主要开发方式,是油田开发技术上的一次大飞跃

2、但二次采油仍有60%~70%的油剩留地下。为此,国内外石油工作者进行了大量研究工作,逐步认识到制约二次采油采收率提高的原因,从而提出了三次采油新方法。 大量实践和理论研究证明,油层十分复杂,具有非均质性,油、 水、 气多相流体在油层多孔介质中的渗流过程十分复杂。不但注入水(气)不可能活塞式驱油,不可能波及到全油层,而且在多相渗流过程中,受粘度差、 毛细管力、 粘滞力、 界面张力等的影响,各相流量将随驱油过程中各相饱和度的变化而变化。只有进一步扩大注入水(气)波及体积,提高驱油效率,才能大幅度提高采收率。由此,人们在非均质性的油层提出了多种三次采油方法,一种是旨在提高注入水粘度、 降低油水粘

3、度差、 提高注入水波及体积的聚合物驱;第二种是旨在降低界面张力、 提高注入水驱油效率的表面活性剂驱、 碱驱、 混相驱;第三种是80年代后期发展起来的既可扩大波及体积又可提高驱油效率的复合驱。 三次采油远不同于二次采油。二次采油是依靠人工补充油层能量的物理作用提高采收率,而三次采油方法是在注水保持油层压力基础上,又依靠注入大量新的驱油剂,改变流体粘度、 组分和相态,具有物理化学的双重作用,不但进一步扩大了注入水波及范围,而且使分散的、 束缚在毛细管中的残余油重新聚集而被采出。因此,三次采油要求更精细地掌握分散原油在地下油层中的分布;研究新的驱油剂与十分复杂的岩石矿物、 流体的物理-化学作用;探

4、索并掌握非牛顿流体多相渗流的基本规律。从而正确合理地进行油田开发部署——井网、 井距、 层系划分、 注采关系、 注采工艺、 动态监测、 相应的地面集输系统和净化处理等。总之,一整套技术都将随着三次采油技术的应用而发生变化。油田开发要建立在更广泛的多学科综合应用基础上,从宏观和微观上更深化对地下流体渗流的认识,深化对油田的认识。三次采油将把油田开发带入一个更高技术水平的新阶段。 2三次采油的基本概念、 类型及驱油机理[16] 2.1三次采油的基本概念和类型 在油田开发过程中,一般称利用油藏天然能量开采的采油方式为一次采油。而在一次采油后,经过注水或非混相注气提高油层压力并驱替油层中原油的驱

5、油方式称为二次采油。三次采油是指油田在利用天然能量进行开采和传统的用人工增补能量(注水、 注气)之后,利用物理的、 化学的、 生物的新技术进行尾矿采油的开发方式。这种驱油方式主要是经过注化学物质、 注蒸汽、 注气(混相)或微生物等,从而改变驱替相和油水界面性质或原油物理性质。当前世界上已形成三次采油的四大技术系列,即化学驱、 气驱、 热力驱和微生物采油。其中化学驱包括聚合物驱、 表面活性剂驱、 碱水驱及其复配的三元复合驱等;气驱包括混相或部分混相的CO2驱、 氮气驱、 天然气驱和烟道气驱等;热力驱包括蒸汽驱、 蒸汽吞吐、 热水驱和火烧油层等;微生物采油包括微生物调剖或微生物驱油等。 2.2三

6、次采油驱油机理 2.2.1化学驱油 2.2.1.1碱驱 碱水驱是把碱类物质, 如氢氧化钠、 硅酸钠、 碳酸钠、 碳酸氢钠、 氢氧化按加入水中注入地层, 经过碱与原油中的酸性组分就地生成表面活性剂, 降低界面张力、 乳化原油、 溶解油水界面上的刚性界面膜、 改变岩石润湿性等机理, 降低残余油, 从而达到提高采收率的目的。碱水驱适合于原油酸值较高、 粘土含量较低的油藏, 但由于碱能与岩石发生反应, 损耗碱的同时也破坏地层, 而且对酸值低的原油, 碱的作用很小, 因此碱驱很快就被淘汰了。 2.2.1.2聚合物驱 聚合物驱油是一种流度控制技术, 是经过在注入水中加入一定量的高相对分子质量的聚

7、丙烯酞胺或生物聚合物黄胞胶, 增加注入水的粘度, 改进油水流度比, 提高驱替相的波及体积, 同时, 由于聚合物溶液属于非牛顿流体, 具有一定的粘弹性, 提高了微观驱油效率, 从而获得较高的采收率。在聚合物驱中, 聚合物浓度一般为300—1500mg/L, 段塞尺寸为0.2—0.6孔隙体积。聚合物驱可提高采收率5%一15%.国外的研究者一般是否定聚合物驱油的, 主要原因是认为聚合物驱只能扩大波及体积, 不能提高驱油效率, 因此总的采收率提高值较低。美国20世纪70-80年代在现场实施了很多聚合物驱油试验, 但平均采收率只提高4.9%, 经济效益差。 我们认为波及体积和驱油效率都能够提高。大规模

8、实施聚合物驱后, 平均采收率提高值为12%左右, 地面注采工艺和设备运行正常、 可靠, 经济效益很好。产生这个反差的重要原因是大庆在粘弹性流体力学和渗流力学方面有所发展, 有些部分还有突破, 带动了整个工艺技术和方法的发展, 大规模推广后取得了很好的效果。 2.2.1.3表面活性剂驱 表面活性剂驱是将表面活性剂( 一般是石油磺酸盐)加入到注入水中, 经过降低油水界面张力提高驱油效率的一种三次采油方法。根据加入表面活性剂量以及在地下形成的体系性质, 表面活性剂驱可分为活性水驱和胶束驱。 在活性水驱中, 加入的表面活性剂量较小, 油水界面张力下降的幅度不是很大, 经过活性水的润湿孔喉、 降低

9、界面张力以及乳化原油机理, 降低残余油饱和度。由于表而活性剂在岩石表面的吸附, 使其损失加大, 驱油效果变差。因此活性水驱的成木相应增大。 胶束驱又称微乳液驱, 是指将表面活性剂、 醇类助剂以及电解质加入注入水中, 在地下形成胶束溶液驱替原油的三次采油方法其表面活性剂用量较大, 由于胶束溶液具有增溶油的特性, 它与油层原油接触后, 可形成混相带, 油水界面消失, 大幅度地提高采收率。 一般胶束驱与聚合物驱联合使用, 即在胶束段塞后紧接着一个聚合物段塞, 以保护胶束段塞不被后续注入水所破坏。胶束聚合物段塞驱具有很高的驱油效率和波及效率, 但注入化学剂成本限制了该方法的应用。 2.2.1.4

10、碱一表面活性剂一聚合物三元复合驱 三元复合驱油是经过在注入水中加入一定量的表面活性剂、 碱和高相对分子量的聚合物.大幅度降低油水界面张力, 增加注入水的粘度, 从而降低油水流度比, 扩大油层宏观和微观波及体积, 进一步驱替水驱残余油, 大幅度降低剩余油饱和度, 提高驱油效率和原油采收率。界面张力越低, 降低剩余油饱和度的幅度越大, 提高驱油效率和采收率的幅度就越大 由于三元复合体系能够使油水界面张力降低至以下, 能够获得很高的驱油效率, 其中聚合物能够增加体系的黏度, 提高波及系数, 因此三元复合驱能够获得较高的原油采收率。室内物理模拟结果认为, 三元复合驱可提高水驱采收率的20%。可是三

11、元复合驱的化学剂成本较高。 2.2.1.5泡沫复合驱 泡沫复合驱技术是在三元复合驱和泡沫驱基础上发展起来的, 该技术充分结合了两者的技术优势。与三元复合驱相比, 泡沫复合体系具有较大的视粘度, 能够更有效地降低水油流度比, 同时由于泡沫具有油敏性, 遇到油易被破坏, 因此具有更强的调剖作用, 进一步提高了体系的波及效率, 使注入体系更多的进入剩余油较多的中低渗透层;同时该体系具有三元复合驱的驱油特点, 能够与被驱替原油形成超低界面张力, 提高驱油效率, 进而更大幅度地提高原油采收率。室内实验结果表明泡沫复合驱可比水驱提高采收率30%左右。该技术是一项极具发展前景的三次采油新技术, 当前正处

12、于研究试验阶段。 2.2.2热力驱三次采油技术 热力采油包括注蒸汽(蒸汽吞吐和蒸汽驱两种工艺)、 火烧油层和热化学采油。注蒸汽和火烧油层都是利用热量加热油层和油层中的流体, 降低原油粘度来达到减小油层流动阻力的目的。所不同的是蒸汽是在地面上的蒸汽发生器(又称热采锅炉)中产生, 经过地面管道和油井注入油层, 而火烧油层热量则是在含油岩层内部产生, 因而也称为就地加热或燃烧过程。这是按产生热量的方式或地点而区分的。 如果按注采工艺区分, 可把热采分为热驱(thermaldrive)和热力激励或增产(thermalstimulation)两类。所谓热驱, 是将热流体连续地注入一口井或几口井驱替

13、原油, 从其它井产油。维持热流体注入所需的压力会加快原油的流动, 也增大油藏中的驱动力, 因此, 热驱不但由温度升高而降低流动阻力, 而且为增加流量供给动力。消耗热量多, 但能获得较高的最终采收率。注蒸汽的热驱称为蒸汽驱, 注空气火烧油层的热驱称为火驱。热力激励或增产只是加热井筒附近的油层。一旦这部分油层内原油流动阻力降低, 较远处油层内的驱动力, 如重力驱、 溶解气驱和天然水驱, 就能引起该井产油速度的增加。注蒸汽的热力激励称为蒸汽吞吐(steamhuffpuff),蒸汽浸泡(steamsoak)或循环注蒸汽(cyclicsteaminjection)。注空气火烧油层用作油井激励的增产措施很

14、少采用, 有时作为一种特殊的方法使用, 因而没给予专门的名称。 热化学是在采油技术中, 注入亚硝酸钠()和硝酸按(), 使其在地层中产生化学反应, 一方面产生气体形成气驱, 一方面反应时产生大量热达到热驱效果。 2.2.2.1蒸汽驱(热水驱) 蒸汽驱是指将蒸汽从注入井注入到油层, 蒸汽将稠油变稀并推向生产井的一种热采方法(如图).蒸汽驱提高原油采收率的机理有原油的粘度降低、 受热膨胀、 蒸汽蒸馏、 汽驱以及相对渗透率和润湿性改变等。在地层中注入的蒸汽干度达到零时, 蒸汽驱变为热水驱。 蒸汽驱中最大的问题是蒸汽超覆和提前突破。由于蒸汽与原油的密度差、 垂向渗透率非均质性以及平面非均质性导

15、致蒸汽沿油层上部窜进和沿高渗透带提前在生产井中突破, 导致波及体积较小, 降低了蒸汽驱稠油采收率。因此, 在蒸汽驱中流度控制技术已变得越来越重要。尽管人们已采用了蒸汽泡沫技术, 但效果并不是很好。另外, 蒸汽发生器排放污染、 结垢、 热效率不高也是蒸汽驱所遇到的问题。尽管如此, 蒸汽驱已成为最有吸引力的三次采油方法, 也是已进入工业化应用阶段的三次采油方法。蒸汽驱的采收率可达50%一60%。 2.2.2.2火烧油层 火烧油层是经过注入空气(或氧气)与地层原油接触, 采用人工井底点火或油层自发点火后, 燃烧油层中部分重质原油, 产生的热量和燃烧产物用以降低原油粘度、 膨胀原油体积、 驱动

16、地层原油从而达到提高采收率的目的。火烧油层与蒸汽驱的最大区别在于火烧油层是在油层内产生热量, 而不是象蒸汽驱那样在地面产生热量。火烧油层的机理非常复杂, 除了蒸汽驱的机理外, 还包括原油就地热裂解和烃类混相驱等。 与注蒸汽不尽相似, 火烧油层很少用作激励增产措施, 极大多数情况用于驱替, 因此火烧油层亦称为火驱(fireflood)。 火烧油层大致可分为干式向前燃烧法(dryforwardcombustion, 简称”干烧法”)、 湿式向前燃烧法(wetforwardcombustion, 简称”湿式燃烧法”)和反向燃烧法(reversecombustion)三种方法。前二种方法中,

17、空气(或其它含氧气体)流动方向与燃烧前缘移动方向相同, 故称为正向燃烧法(如图);第三种方法空气流向与燃烧前缘移动方向恰好相反, 故称为反向燃烧法。 2.2.3气驱三次采油技术 气驱采油技术主要是混相驱或者部分混相驱, 这在美国得到广泛应用, 比中国聚合物采油规模要大得多。 气体混相驱的目的是利用注入气体能与原油达到混相的特性, 使注入流体与原油之间的界面消失, 即界面张力降低至零, 从而驱替出油藏的残余油。气体混相驱按混相机理可分为一次接触混相驱和多次接触混相驱。按注入气体类型可分为烃类气体混相驱(如LPG段塞驱、 富气驱、 贫气驱)和非烃类气体混相驱(如驱、 和烟道气等)。 2.2

18、4微生物驱三次采油技术[8] 微生物提高采收率是指利用微生物及其代谢产物增加石油产量的一种石油开采技术。该技术是将经过筛选和评价的微生物与培养基注入地下油层, 经过微生物就地繁殖和代谢, 产生酸、 气体、 溶剂、 生物表面活性剂和生物聚合物, 改变岩石孔道和油藏原油的物理化学性质, 提高原油产量和增加油藏原油采收率。 微生物采油技术又分为外源微生物采油技术和本源微生物采油技术。所谓外源微生物表油技术, 是将地面培养的微生物菌种与营养物一起注入地层, 菌种在油藏内繁殖, 生长企生大量代谢物如酸、 低分子量溶剂、 表面活性剂物质、 气体、 生物聚合物等, 改进原油、 油水界面性质和驱油效率提

19、高油田采收率。与外源微生物采油技术不同的是, 本源微生物采油技术是根据油层内微生物种类、 数量和生长特性, 研制相应的激活剂激活那些对提高石油采收率有利的微生物, 从而产生大量的代谢产物, 增加产油量。 3试验及推广规模[2] 3.1推广规模 当前三次采油技术发展迅猛, 聚合物驱油已成为东部油田实现技术接替稳产的重要手段。大庆油田已在北二区、 北一中块、 喇北东块等6个大区, 开展注聚面积达时, 地质储量1.2t以上。1997年三次采油年产油量已接近, 占大庆油田总产量的8.8%。平均吨聚合物增油120t。全油田适合聚合物驱的储量达27.8t, 前景十分广阔。 胜利油田1997年已投注

20、8个化学驱试验项目。当前孤岛中一区聚合物驱、 西区聚合物驱、 孤东八区聚合物驱及西区复合驱已开始实施, 其它项目正在编制实施方案。化学驱面积30.70甘, 地质储量t, 注人井数284口, 生产井数486口, 预测提高采收率8.7%, 增加可采储量t。1997年三次采油年产量达t以上。 大港油田”九五”期间拟在港西二区断块, 三区一、 三、 四断块, 五区一断块和羊三木三断块Ng上开展注聚工作, 注聚面积达11.8时, 地质储量t, 注人井81口, 生产井155口, 预计提高采收率8%左右, 增加可采储量t。 新疆克拉玛依油田1998年将在七东1区开辟一个1时以上复合驱工业试验区, 预计提

21、高采收率8%, 增加可采储量t以上。 1990~1993年,吉林油田先后在近40口油井进行了”微生物井下发酵”提高采收率的试验,选出菌种为厌氧菌种,选择试验井的宗旨为过渡带地区的稠油井。利用微生物降解原油,改进原油的流动性;微生物在地层中发酵生成表面活性剂可降低油水界面张力,提高驱替效率等特性,选择中、 高含水层能起到降水增油的效果。施工的35口油井,平均注入含菌5%~6%的水溶液约300,累计增油数千吨。从试验井取样分析结果看,原油粘度降低,含蜡量降低,有利于重油的流动。 3.2室内实验研究呈多元化 各油田较注重各种提高采收率技术的储备研究和技术的多元化超前研究, 主要开展的三次采油室

22、内研究项目有以下几个方面: ( 1)三元复合体系驱油研究。 当前各油田在这方面的研究重点是选择驱油效果好, 价格低廉的表面活性剂, 或者在表面活性剂的复配上进行了一些研究工作。以降低三元复合驱体系中的活性剂成本。大庆油田对于三元复合体系中色谱分离效应的研究已引起了重视, 并在这方面开展了工作, 提出了减少色谱分离的有效方法。该项研究可为大井距配方的选择提供依据。 ( 2)微生物驱油试验研究。 中国主要油田都开展了微生物采油和微生物驱技术的室内研究工作, 主要研究内容有:①采用以烃类为唯一碳源的选择性培养基可在自然环境中筛选、 培养采油微生物菌种;②在油、 水环境, 油藏温度下, 提供适

23、当的培养基来促使微生物生长繁殖;③用微生物来进一步提高油藏采收率;④用微生物疏通油、 水渗流通道, 降低油水井的注人压力;⑤微生物驱油提高采收率的主要机理;⑥研究筛选乳化原油, 降低油水界而魂为及厦油粘度的菌种。当前大港油田、 胜利油田、 克拉玛依油田已开展了微生物驱先导试验工作。 ( 3)凝胶体系地层深部流体转向技术研究 凝胶体系地层深部流体转向技术属于调节层间或层内矛盾, 增加波及系数的一种提高采收率的方法。大港、 胜利及大庆油田都开展了该项研究, 特别是胜利油田已在孤东七区、 三区、 西四区等区块开展了交联聚合物驱油试验, 见到了明显的效果。 4大庆三元复合驱油技术已取得重大突破[

24、3] 4.1初步形成了以烷基苯磺酸盐为主剂的三元复合驱配套技术 围绕烷基苯磺酸盐这类活性剂,经过”八五”、 ”九五”期间不懈努力,已经在室内配方优选、 物理模拟驱油实验、 数值模拟方案设计、 矿场试验以及注采工艺和地面工程方面形成了一个完整的配套体系。 4.1.1三元复合驱可比水驱提高采收率 三元复合驱可比水驱提高采收率20%(OOIP)以上已完成的4个烷基苯磺酸盐三元复合驱先导性试验取得了比水驱提高采收率20个百分点以上的好效果。其中杏二区西部三元复合驱矿场试验在长期含水100%的情况下,当前已取得了比水驱提高采收率19.26%(OOIP)。正在进行的北一区断西三元复合驱矿场试验已取

25、得比水驱提高采收率16.57个百分点的效果,预计最终可比水驱提高采收率20%以上。 4.1.2虽然三元复合驱矿场试验产生乳化和结垢,但仍具有较高的采油速度 (1)三元复合驱采油速度高于聚合物驱 虽然三元复合驱矿场试验出现了乳化和结垢现象,特别是杏二区西部三元复合驱矿场试验在乳化严重时,采出液的粘度高达180mPa·s,使试验区产液能力下降幅度较大,采液指数下降了5015%~9515%,但由于该阶段综合含水很低,因而采油速度仍保持了较高水平,平均年采油速度在414%~1713%之间,高于聚合物驱。 (2)三元复合驱注入能力略高于聚合物驱,采液能力略低于聚合物驱 先导性矿场试验表明,各试

26、验区在注入强度为610~1810/(dm)的条件下,表现为注入压力上升,吸水能力下降,比聚合物驱注入能力下降幅度要低。在不同井距、 不同油藏条件下,不同配方的三元复合驱采液能力都明显下降,但下降程度各有不同。采液能力变化主要与井距有关,同时还与乳化、 结垢的程度有关。 4.1.3小排量螺杆泵对三元复合驱具有较好的适应性 经过对三元复合驱举升方式的适应性评价、 优选及现场试验,证明抽油机、 螺杆泵能够适应三元复合排量要求,螺杆泵比较适合对三元复合驱油井举升。例如杏2-2-试1井于1998年6月换为螺杆泵,举升效率保持在70%以上,检泵周期由28d延长到303d。北1-6-P34井 8月17日

27、下入改进后的螺杆泵,日产液由措施前的不到40t提高到措施初期的129t,当前仍保持在100~120t,平均排量效率保持在6510%以上。 4.2室内实验及矿场试验表明地面工艺初步可行 当前,三元复合驱配注工艺流程有两种,一种是点滴流程,其特点是首先将聚合物分散熟化,在熟化过程中,定量的将表面活性剂加入,使其配成SP二元母液;将碱(NaOH)加入到水中,稀释成一定浓度的碱溶液,最后分别用升压泵将SP母液和碱溶液升压,计量后经静态混合器混合形成三元体系,注至井口。另一种是目的液流程,即在注入罐中配制好三元体系。三元复合驱采出液处理技术基本满足了引进表面活性剂小型试验的要求。针对大庆产植物油羧酸

28、盐和烷基芳基磺酸盐表面活性剂三元复合驱模拟采出液,分别使用新复配的破乳剂FD310和FD408-01,在处理温度为40℃,沉降时间为25min条件下,能够实现有效分离,并使分离后指标达到油中含水小于20%,水中含油小于 mg/L,但需要在工业性矿场试验验证其效果。 5中原油田三采技术[10] 从1998年起,中原油田相继开展了吞吐、 驱、 合成聚合物驱、 交联聚合物驱、 微生物采油等项现场试验,均显现出较好的效果。 5.1 交联聚合物驱 从 9月30日开始,在胡19块进行5井组交联聚合物驱现场试验,配方体系适应油藏温度≤90℃,矿化度≤25×104mg/L,二价阳离子≤4500mg/L

29、的油藏条件,成胶时间在420天,成胶强度在306000MPa·s的范围内可控。注入层位为S3中28S3中34合注,注入方式为二级段塞,一级段塞为0.035PV ppm,二级段塞为0.115PV800ppm,单井日注量为80/天,对应12口油井。注交联聚合物10天后,注入压力从12MPa上升至20MPa。20天后,含水从81%下降到70%,原油日产量由注聚前的13.4t/天上升到21.3t/天,截止到 8月15日,累计增油2300t,试验取得了明显的经济效益。 5.2 聚合物驱 从 5月30日开始,在卫18-14井组进行耐温耐盐聚合物驱现场试验,试验用聚合物由AM、 AMPS及第三单体和第四

30、单体共聚合成,适应油藏温度90e,矿化度≤16×104mg/L,二价阳离子3000mg/L的油藏条件。试验区为卫18北块,试验注入井为卫18-4井,试验目的层为沙一下1、 2两个小层,该井组由1口水井和五口油井(卫18-6、 卫18-2、 卫116、 卫229-2、 卫18-11井)组成。设计注入量为0.035PV mg/L,注聚时间为1年半,有效期为3年。在注聚合物后,含水从98%下降到94%,原油日产量由注聚前的10.1t/天上升到13.3t/天,截止到 8月15日,累计增油720t,试验取得了明显的效果。 5.3 驱 6月3日,我们在采油二厂成功地进行卫42-14井组注氮气驱先导实

31、验试注, 9月22日停注,已累计注液氮863.7,稳定注气压力56.5MPa。井组共有4口油井,都不同程度见到了注气效果,累计增油646t。注气泵压达56.5MPa,最高日注气能力达31.8液氮,注气工艺具国内领先水平。 5.4 微生物采油 从 1月开始,在胡五块陆续进行了4个井组的微生物井组驱油先导试验,综合含水89%,采出程度21.08%,地面原油粘度15.5~41.8MPa·s,地层水矿化度为(20.425)×104mg/L,油藏温度90.3℃。截止到 11月,新胡5-15、 侧胡5-31井各注入4个段塞,胡7-70井注入2个段塞,胡7-205井注入6个段塞,共注入微生物原液28t,

32、共增油170t。 6辽河油田三采现状[1] 近年来,辽河油田一直在寻找新的稠油开采工艺技术,把二氧化碳气体和水蒸气结合起来用于热力采油,不但拓展了二氧化碳气体采油的应用领域,而且也丰富了以蒸汽吞吐为主的热力采油的内容。同时利用磺酸盐等表面活性剂的调剖作用,构成了以蒸汽吞吐为主、 二氧化碳气体采油为辅、 表面活性剂为调剖剂的综合热力采油新工艺。 截止 底,曙一区杜84块油藏已累积探明含油面积为612,探明石油地质储量为8273×t,平均储量为1334.35×t/,储量丰度高。纵向上发育了3套开发层系:馆陶油层、 兴隆台油层兴Ⅰ—兴Ⅳ组和兴Ⅵ组。其中,馆陶油层含油面积为1192,地质储量为

33、2626×t;兴隆台油层兴Ⅰ—兴Ⅳ组含油面积为519,储量为2914×t;兴隆台油层兴Ⅵ组含油面积为516,储量为2733×t。储层物性好,油层相对集中,有利于整体开发。1997年对兴隆台油层进行了开发部署,主要采用直井蒸汽吞吐开发,在一套层系约70m井距正方形井网内,总体部署开发井995口,其中直井983口,水平井12口(试采)。截至 12月底完钻各类井632口,投产620口,开井460口,产油量为3253t/d,平均单井产油量为7.1t/d,累积吞吐4200井次,平均单井吞吐6.8井次。累积注蒸汽量为918.9×t,累积产油量为407.2×t,累积产水量为616.4×t,累计油汽比为0.4

34、4,累计回采水率为67%,采出程度为7.2%。 对馆陶油层进行了开发部署,确定馆陶油层采用直井蒸汽吞吐开发方式,在一套层系的70m井距正方形井网及在距油水边界200m以外的区域进行部署,馆陶油层总体部署开发井225口。截至 底共完钻各类井220口,当前蒸汽吞吐开发投产208口,开井182口,产油量为1251t/d,平均单井产油量为6.9t/d,累积吞吐1635井次,平均单井吞吐7.9井次。累积注汽量为311.1×t,累积产油量为214.2×t,累积产水量为249.7×t,累积油汽比为0.69,累积回采水率为80%,采油速度为1.74%,采出程度为8.2%。超稠油蒸汽吞吐阶段生产特点:杜84块超

35、稠油油藏与普通稠油和特稠油的生产周期相比,初期生产天数约为60d,而普通稠油油藏生产天数为250d;周期产量约为800t,普通稠油的周期产量为6000t;初期油气比为015,而普通稠油为110以上。因此,杜84块超稠油具有周期生产时间短、 周期产量低、 油汽比低的特点。存在的主要问题包括: ①高轮蒸汽吞吐阶段周期产量低、 日产水平低、 油汽比低,单位操作成本高; ②蒸汽吞吐阶段平面动用半径有限,井间剩余油富集; ③产量递减快,年综合递减率平均约为20%; ④蒸汽吞吐阶段采收率低,预测馆陶油层采收率为22%,兴隆台油层采收率为25。 参考文献: [1]张小波·蒸汽-二氧化碳-助剂吞

36、吐开采技术研究[J]·石油学报 .3:27-2 [2]李建江, 赵玲莉·三次采油技术的发展[J]·油气田地面工程 .6:18-2 [3]WANGDEMIN,CHENGJIECHENG·SummaryofASPPilotsinDaqingOilfield[C]·SPE57288· [4]郭万奎,程杰成,廖广志·大庆油田三次采油技术研究现状及发展方向[J]·大庆石油地质开发 .6:12-3 [5]张景存·大庆油田聚合物驱油矿场试验动态反应特点[J]·油田化学,1993,10(1) [6]LiJianjiangetcTheDevelopmentOfTertiaryOilRecoveryTe

37、chnology [7]冈秦麟·论中国的三次采油技术[J]·油气采收率技术 .5:5-4 [8]谈士海·微生物采油增产机理及应用[J]·油气井测试 .2:17-3 [9]冯庆贵等·应用微观透明模型研究微生物驱油机理[M]·油田化学, .3 [10]王志鹏·中原油田三次采油技术发展方向和潜力分析[J]·西部探矿工程 .10:9-5 [11]沈平平,俞稼镛·大幅度提高原油采收率的基础研究[M]北京:石油工业出版社, [12]杨普华·提高采收率研究的现状及近期发展方向[J]·油气采收率技术,1999,6:4-1 [13]陈铁龙·三次采油概论〔M〕·地质出版社, .11 [14]华建海, 李干佐·三次采油技术的发展现状及展望[J]·化工科技市场, .7:17-20. [15]计秉玉·对大庆油田进一步开展三次采油技术研究工作的几点意见[J]·大庆石油地质与开发, .12:60-63. [16]黄学·中国石油企业三次采油技术预见理论及应用[J]· .9

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服