1、 山东阿华生物药业有限公司 卫生学及微生物学基础知识培训教材 山东阿华生物药业有限公司 二〇〇九年三月 绪论 第一节 微生物 微生物(microorganism)是存在于自然界的一大群体形微小、结构简单、肉眼直接看不见,必须籍助光学显微镜或电子显微镜放大数百倍、数千倍,甚至数万倍才能观察到的微小生物。 微生物的种类与分布 微生物的种类繁多,在数十万种以上。按其大小、结构、组成等,可分为三大类。 1.非细胞型微生物 是最小的一类微生物。无典型的细胞结构,无产生能量的酶系统,只能在活细胞内生长增殖。核酸类型
2、为DNA或RNA,两者不同时存在。病毒属之。 2.原核细胞型微生物 这类微生物的原始核呈环状裸DNA团块结构,无核膜、核仁。细胞器很不完善,只有核糖体。DNA和RNA同时存在。这类微生物众多,有细菌、支原体、衣原体、立克次体、螺旋体和放线菌。后五类的结构和组成与细菌接近,故从分类学观点,将它们列入广义的细菌范畴。 3.真核细胞型微生物 细胞核分化程度高,有核膜和核仁。细胞器完整。真菌属此类。 微生物在自然界的分布极为广泛。江河、湖泊、海洋、土壤、矿层、空气等都有数量不等,种类不一的微生物存在。其中以土壤中的微生物最多,例如1g肥沃土壤可有几亿到几十亿个。在人类、动物和植物的体表,以及与外
3、界相通的人类和动物的呼吸道、消化道等腔道中,亦有大量的微生物存在。 微生物与人类的关系 绝大多数微生物对人类和动、植物是有益的,而且有些是必需的。自然界中N、C、S等元素的循环要靠有关的微生物的代谢活动来进行。例如土壤中的微生物能将死亡动、植物的有机氮化物转化为无机氮化物,以供植物生长的需要,而植物又为人类和动物所食用。此外,空气中的大量游离氮,也只有依靠固氮菌等作用后才能被植物吸收。因此,没有微生物,植物就不能进行代谢,人类和动物也将难以生存。 在农业方面,也可以应用微生物制造菌肥、植物生长激素等;也可利用微生物感染昆虫这一自然现象来杀死害虫。例如苏云金杆菌能在一些农作物害虫的肠腔中生
4、长繁殖并分泌毒素,导致寄生昆虫的死亡。这样,开辟了以菌造肥、以菌催长、以菌防病、以菌治病等农业增产新途径,为人类创造物质财富。 在工业方面,微生物应用于食品、皮革、纺织、石油、化工、冶金等行业日趋广泛。例如采用盐酸水解法生产1吨味精需要小麦30吨,现改用微生物发酵法只需薯粉3吨。既降低生产成本,又大大节约细粮。又如在炼油工业中,利用多种能以石油为原料的微生物进行石油脱蜡,可以提高石油的质量和产量。 在医药工业方面,有许多抗生素是微生物的代谢产物。也可选用微生物来制造一些维生素、辅酶等药物。 此外,在污水处理方面,利用微生物降解有机磷、氰化物等亦有良好效果。 近年
5、来,随着分子生物学的发展,微生物在基因工程技术中的作用更显辉煌。不仅提供了必不可少的多种工具酶和载体系统,更可人为地定向创建有益的工程菌新品种,能在无污染自然环境中制造出多样、大量的人类必需品。 第二节 微生物学 微生物学(microbiology)是生命科学的一个重要分支,是研究微生物的类型、分布、形态、结构、代谢、生长繁殖、遗传、进化,以及与人类、动物、植物等相互关系的一门科学。微生物学工作者的任务是将对人类有益的微生物用于生产实际,对人类有害的微生物予以改造、控制和消灭;使微生物学朝向人类需要的方向发展。 微生物学的发展过程大致可分三个时期。 微生物学经验时期 古代人类虽
6、未观察到具体的微生物,但早已将微生物知识用于工农业生产和疾病防治之中。公元前两千多年前的夏禹时代,就有仪狄作酒的记载。北魏(386—534)贾思勰《齐民要术》一书中,详细记载了制醋方法。那时也已知道豆类的发酵过程,从而制成了酱。民间常用的盐腌、糖渍、烟熏、风干等保存食物的方法,实际上都是防止食物因微生物生长繁殖而腐烂变质的有效措施。 古代人早已认识到天花是一种烈性传染病,一旦与患者接触,几乎都将受染,且死亡率极高。但已康复者去护理天花病人,则不会再得天花。这种免得瘟疫的现象,是“免疫”一词的最早概念。我国祖先在这个现象的启发下,开创了预防天花的人痘接种法。人痘接种预防天花是我国预防医学上的一
7、大贡献。 实验微生物学时期 首先观察到微生物的是荷兰人列文虎克(Antony van Leeuwenhoek,1632-1723)。他于1676年用自磨镜片,创制了一架能放大266倍的原始显微镜,发现许多肉眼看不见的微小生物,并正确地描述了微生物的形态有球形、杆状和螺旋样等,为微生物的存在提供了科学依据。 巴斯德为防止酒类发酵成醋创用的加温处理法,就是至今仍沿用于酒类和牛奶的巴氏消毒法。在巴斯德的影响下,英国外科医生李斯特(Joseph Lister,1827-1912)创用石炭酸喷洒手术室和煮沸手术用具,以防止术后感染,为防腐、消毒,以及无菌操作奠定基础。 18世纪末,英国琴纳(Edw
8、ard Jenner,1749-1823)创用牛痘预防天花,为预防医学开辟了广阔途径。随后,巴斯德研制鸡霍乱、炭疽和狂犬病疫苗成功。 1929年Fleming发现青霉菌产生的青霉素能抑制金黄色葡萄球菌的生长。直到1940年,Florey等将青霉菌的培养液予以提纯,才获得可供临床使用的青霉素纯品。青霉素的发现,鼓舞了微生物学家们寻找、发掘抗生素的热潮,于是链霉素、氯霉素、金霉素、土霉素、红霉素等等相继发现。使许多由细菌引起的感染和传染病得到控制和治愈,为人类健康作出了巨大贡献。 现代微生物学时期 近30年来,随着化学、物理学、生物化学、遗传学、细胞生物学、免疫学和分子生物学等学科的进展,电子
9、显微镜技术、细胞培养、组织化学、标记技术、核酸杂交、色谱技术和电子计算机等新技术的建立和改进,微生物学得到极为迅速的发展。 第一篇 细菌学 第1章 细菌的形态与结构 细菌(bacterium)是属原核生物界(prokaryotae)的一种单细胞微生物,有广义和狭义两种范畴。广义上泛指各类原核细胞型微生物,包括细菌、放线菌、支原体、衣原体、立克次体、螺旋体。狭义上则专指其中数量最大、种类最多、具有典型代表性的细菌。它们形体微小,结构简单,具有细胞壁和原始核质,无核仁和核膜,除核糖体外无其他细胞器。 第一节 细菌
10、的大小与形态 观察细菌最常用的仪器是光学显微镜 ,其大小可以用测微尺在显微镜下进行测量,一般以微米(μm)为单位。不同种类的细菌大小不一,同一种细菌也因菌龄和环境因素的影响而有差异。 细菌按其外形,主要有球菌、杆菌和螺形菌三大类 球菌 多数球菌(coccus)直径在1μm左右,外观呈圆球形或近似球形。 1.双球菌(diplococcus) 肺炎链球菌。 2.链球菌(streptococcus) 乙型溶血性链球菌。 3.葡萄球菌(staphylococcus) 金黄色葡萄球菌。 4.四联球菌(tetrads) 四联加夫基菌。 5.八叠球菌(sarc
11、ina) 藤黄八叠球菌 杆菌 不同杆菌(bacillus)的大小、长短、粗细很不一致。 大的杆菌如炭疽芽胞杆菌长3~10μm,中等的如大肠埃希菌长2~3μm,小的如布鲁菌长仅 0.6~1.5μm。 螺形菌 螺形菌(spiral bacterium)菌体弯曲,有的菌体长2~3μm,只有一个弯曲,呈弧形, 如霍乱弧菌;有的菌体长3~6μm,有数个弯曲称为螺菌(spirillum), 如鼠咬热螺菌;也有的菌体细长弯曲呈弧形或螺旋形,称为螺杆菌(helicobacterium),如幽门螺杆菌。 细菌的形态受温度、pH 、培养基成分和培养时间等因素影响很大。一般是细菌在适宜的生长条件下
12、培养8~18d时形态比较典型, 在不利环境或菌龄老时常出现梨形、气球状和丝状等不规则的多形性(polymorphism),称为衰退型(involution form)。因此,观察细菌的大小和形态,应选择适宜生长条件下的对数期为宜。 第二节 细菌的结构 细菌虽小,仍具有一定的细胞结构和功能。细胞壁、细胞膜、细胞质和核质等各种细菌都有,是细菌的基本结构;荚膜、鞭毛、菌毛、芽胞仅某些细菌具有,为其特殊结构。 一、 细菌的基本结构 细胞壁 细胞壁(cell wall)位于菌细胞的最外层,包绕在细胞膜的周围。是一种膜状结构, 组成较复杂, 并随不同细菌而异。 用革
13、兰染色法可将细菌分为两大类,即革兰阳性菌和革兰阴性菌。两类细菌细胞壁的共有组分为肽聚糖,但各自有其特殊组分。 1.肽聚糖(peptidoglycan) 是细菌细胞壁中的主要组分,为原核细胞所特有,革兰阳性菌的肽聚糖由聚糖骨架、四肽侧链和五肽交联桥三部分组成,革兰阴性菌的肽聚糖仅由聚糖骨架和四肽侧链两部分组成。 聚糖骨架由N-乙酰葡糖胺(N-acetyl glucosamine)和N-乙酰胞壁酸(N-acetylmuramic acid)交替间隔排列,经β-1,4糖苷键联结而成。各种细菌细胞壁的聚糖骨架均相同。 2.革兰阳性菌细胞壁特殊组分 革兰阳性菌的细胞壁较厚(20~8
14、0nm),除含有15~50层肽聚糖结构外,大多数尚含有大量的磷壁酸(teichoic acid),少数是磷壁醛酸(teichuroic acid),约占细胞壁干重的50%。 3.革兰阴性菌细胞壁特殊组分 革兰阴性菌细胞壁较薄(10~15nm),但结构较复杂。除含有1~2层的肽聚糖结构外,尚有其特殊组分外膜(outer membrane),约占细胞壁干重的80%。 4.细胞壁的功能 细菌细胞壁坚韧而富弹性,其主要功能维持菌体固有的形态,并保护细菌抵抗低渗环境。细菌细胞质内有高浓度的无机盐和大分子营养物质,其渗透压高达5~25个大气压。由于细胞壁的保护作用,使细菌能承受内部巨大的渗透压而不
15、会破裂,并能在相对低渗的环境下生存。细胞壁上有许多小孔,参与菌体内外的物质交换。 菌体表面带有多种抗原表位,可以诱发机体的免疫应答。 细胞膜 细胞膜(cell membrane)或称胞质膜(cytoplasmic membrane),位于细胞壁内侧,紧包着细胞质。厚约7.5nm,柔韧致密,富有弹性,占细胞干重的10%~30%. 细菌细胞膜是细菌赖以生存的重要结构之一,其功能主要有物质转运、生物合成、分泌和呼吸等作用。 细胞质 细胞膜包裹的溶胶状物质为细胞质(cytoplasm)或称原生质(protoplasm),由水、蛋白质、脂类、核酸及少量糖和无机盐组成,其中含有许多重要结构
16、 1.核糖体(ribosome)核糖体是细菌合成蛋白质的场所,游离存在于细胞质中,每个细菌体内可达数万个。 2.质粒(plasmid)质粒是染色体外的遗传物质,存在于细胞质中。 为闭合环状的双链DNA,带有遗传信息,控制细菌某些特定的遗传性状。质粒能独立自行复制,随细菌分裂转移到子代细胞中。质粒不是细菌生长所必不可少的,失去质粒的细菌仍能正常存活。质粒除决定该菌自身的某种性状外,还可通过接合或转导作用等将有关性状传递给另一细菌。 核质 细菌是原核细胞,不具成形的核。细菌的遗传物质称为核质(nuclear material)或拟核(nucleoid),集中于细
17、胞质的某一区域,多在菌体中央,无核膜、核仁和有丝分裂器;因其功能与真核细胞的染色体相似,故习惯上亦称之为细菌的染色体(chromosome)。 细菌的染色体(核质)为一个共价闭合环状双链DNA 分子, 由两股方向相反的DNA 多聚链呈右手双螺旋结构。 二、细菌的特殊结构 荚膜 某些细菌在其细胞壁外包绕一层粘液性物质,为疏水性多糖或蛋白质的多聚体,用理化方法去除后并不影响菌细胞的生命活动。凡粘液性物质牢固地与细胞壁结合,厚度≥0.2μm ,边界明显者称为荚膜(capsule)或大荚膜(macrocapsule)。厚度<0.2μm者称为微荚膜(m
18、icrocapsule) 鞭毛是细菌的运动器官。鞭毛长5~20μm,直径12~30nm,需用电子显微镜观察,或经特殊染色法使鞭毛增粗后才能在普通光学显微镜下看到,具有鞭毛的细菌在液体环境中能自由游动,速度迅速。细菌的运动有化学趋向性,常向营养物质处前进,而逃离有害物质。 菌毛许多革兰阴性菌和少数革兰阳性菌菌体表面存在着一种比鞭毛更细、更短而直硬的丝状物,与细菌的运动无关,称为菌毛(pilus或fimbriae)。 芽胞某些细菌在一定的环境条件下,能在菌体内部形成一个圆形或卵圆形小体,是细菌的休眠形式,称为内芽胞(endospore),简称芽胞(spore),以别于真菌在菌体外部形成的孢子
19、产生芽胞的细菌都是革兰阳性菌,重要的有芽胞杆菌属(炭疽芽胞杆菌等)和梭菌属(破伤风梭菌等)。细菌的芽胞对热力、干燥、辐射、化学消毒剂等理化因素均有强大的抵抗力。一般细菌繁殖体在80℃水中迅速死亡,而有的细菌芽胞可耐100℃沸水数小时。被炭疽芽胞杆菌芽胞污染的草原,传染性可保持20~30年。被芽胞污染的用具、敷料、手术器械等,用一般方法不易将其杀死,杀灭芽胞最可靠的方法是高压蒸气灭菌。当进行消毒灭菌时,应以芽胞是否被杀死作为判断灭菌效果的指标。 第三节 细菌形态与结构检查法 一、 显微镜放大法 细菌形体微小,肉眼不能直接看到,必须藉助显微镜放大后才能看到。 普通光学显微镜 普
20、通光学显微镜(light microscope)以可见光(日光或灯光)为光源,波长0.4~0.7μm,平均约0.5μm。其分辨率为光波波长的一半,即0.25μm。0.25μm的微粒经油镜放大1000倍后成 0.25mm,人的眼睛便能看清。一般细菌都大于0.25μm,故可用普通光学显微镜予以观察。 电子显微镜 电子显微镜(electron microscope)是利用电子流代替可见光波,以电磁圈代替放大透镜。电子波长极短,约为0.005nm,其放大倍数可达数十万倍,能分辨1nm 的微粒。不仅能看清细菌的外形,内部超微结构也可一览无遗。当前使用的电子显微镜有两类,即透射电子显微镜(transm
21、ission electron microscope, TEM)和扫描电子显微镜(scanning electron microscope, SEM)。SEM的分辨率一般较TEM低,但可清楚地显露观察物体的三维立体图像。配合电子显微镜观察使用的标本制备方法有用磷钨酸或钼酸铵作负染色、投影法(shadowing)、超薄切片(ultrathin section)、冰冻蚀刻法(freeze etching)等。电子显微镜标本须在真空干燥的状态下检查,故不能观察活的微生物。 二、 染色法 细菌体小半透明,经染色后才能观察较清楚。染色法有多种,最常用最重要的分类鉴别染色法是革兰氏染色法(Gram
22、stain)。标本固定后,先用碱性染料结晶紫初染,再加碘液媒染,使之生成结晶紫—碘复合物;此时不同细菌均被染成深紫色。然后用95%乙醇处理,有些细菌被脱色,有些不能。最后用稀释番红复染。此法可将细菌分为两大类:不被乙醇脱色仍保留紫色者为革兰阳性菌,被乙醇脱色后复染成红色者为革兰阴性菌。革兰染色法在鉴别细菌、选择抗菌药物、研究细菌致病性等方面都具有极其重要的意义。 第2章 细菌的生理 细菌的生理活动包括摄取和合成营养物质,进行新陈代谢及生长繁殖。整个生理活动的中心是新陈代谢,细菌的代谢活动十分活跃而且多样化,乃至繁殖迅速是其显著的特点。研究细菌的生理活动不仅是基础生物学科的范畴,而且与医学
23、环境卫生、工农业生产等都密切相关。诸如对于人体的正常菌群,特别是益生菌(probiotic),如何促进其生长繁殖和产生有益的代谢产物。对于致病菌,了解其代谢与致病的关系,设计和寻找有关诊断和防治的方法。利用细菌的代谢来净化环境,开发极端环境的微生物资源等都具有重要的理论和实际意义。 第一节 细菌的理化性状 一、细菌的化学组成 细菌和其他生物细胞相似,含有多种化学成分,包括水、无机盐、蛋白质、糖类、脂质和核酸等。水分是菌细胞重要的组成部分,占细胞总重量的75%~90%。菌细胞去除水分后,主要为有机物,包括碳、氢、氮、氧、磷和硫等。还有少数的无机离子,如钾、钠、铁、镁、钙、氯等;用以构成
24、菌细胞的各种成分及维持酶的活性和跨膜化学梯度。 二、细菌的物理性状 光学性质 细菌为半透明体。当光线照射至细菌,部分被吸收,部分被折射,故细菌悬液呈混浊状态。菌数越多浊度越大,使用比浊法或分光光度计可以粗略地估计细菌的数量。 带电现象 细菌固体成分的50%~80%是蛋白质,蛋白质由兼性离子氨基酸组成。革兰阳性菌pI为2~3,革兰阴性菌pI为4~5,故在近中性或弱碱性环境中,细菌均带负电荷,尤以前者所带电荷更多。 半透性 细菌的细胞壁和细胞膜都有半透性,允许水及部分小分子物质通过,有利于吸收营养和排出代谢产物。 渗透压 细菌体内含有高浓度的营养物质和无机盐,一般革兰阳性菌的
25、渗透压高达20~25个大气压,革兰阴性菌为5~6个大气压。细菌所处一般环境相对低渗,但有坚韧细胞壁的保护不致崩裂。若处于比菌内渗透压更高的环境中,菌体内水分逸出,胞质浓缩,细菌就不能生长繁殖。 第二节 细菌的营养与生长繁殖 一、细菌的营养类型 各类细菌的酶系统不同,代谢活性各异,因而对营养物质的需要也不同。根据细菌所利用的能源和碳源的不同,将细菌分为两大营养类型。 自养菌(autotroph)该类菌以简单的无机物为原料,如利用CO2、CO32―作为碳源,利用N2、NH3、NO2―、NO3―等作为氮源,合成菌体成分。这类细菌所需能量来自无机物的氧化称为化能自养菌(chemotroph),
26、或通过光合作用获得能量称为光能自养菌(phototroph)。 异养菌(heterotroph)该类菌必须以多种有机物为原料,如蛋白质、糖类等,才能合成菌体成分并获得能量。异养菌包括腐生菌(saprophyte)和寄生菌(parasite)。腐生菌以动植物尸体、腐败食物等作为营养物;寄生菌寄生于活体内,从宿主的有机物获得营养。所有的病原菌都是异养菌,大部分属寄生菌。 二、细菌的营养物质 对细菌进行人工培养时,必须供给其生长所必须的各种成分,一般包括水、碳源、氮源、无机盐和生长因子等。 水 细菌所需营养物质必须先溶于水,营养的吸收与代谢均需有水才能进行。 碳源 各种
27、碳的无机或有机物都能被细菌吸收和利用,合成菌体组分和作为获得能量的主要来源。病原菌主要从糖类获得碳。 氮源 细菌对氮源的需要量仅次于碳源,其主要功能是作为菌体成分的原料。很多细菌可以利用有机氮化物,病原性微生物主要从氨基酸、蛋白胨等有机氮化物中获得氮。 无机盐 细菌需要各种无机盐以提供细菌生长的各种元素,其需要浓度在10-3~10-4mol/L的元素为常用元素, 其需要浓度在10-6~10-8 mol/L元素为微量元素。 生长因子 许多细菌的生长还需一些自身不能合成的生长因子(growth factor),通常为有机化合物,包括维生素、某些氨基酸、嘌呤、嘧啶等。
28、少数细菌还需特殊的生长因子,如流感嗜血杆菌需要Х、Ⅴ两种因子,Ⅹ因子是高铁血红素,Ⅴ因子是辅酶Ⅰ或辅酶Ⅱ,两者为细菌呼吸所必需。 三、细菌摄取营养物质的机制 营养物质进入菌体内的方式有被动扩散和主动转运系统。 被动扩散 被动扩散指营养物质从浓度高向浓度低的一侧扩散,其驱动力是浓度梯度,不需要提供能量。简单扩散。 主动转运系统 主动转运系统是细菌吸收营养物质的主要方式,其特点是营养物质从浓度低向浓度高的一侧转运,并需要提供能量。 各种细菌的转运营养物质的方式不同,即使对同一种物质,不同细菌的摄取方式也不一样。 四、影响细菌生长的环境因素 营养物质、能量和适宜的环境
29、是细菌生长繁殖的必备条件。 营养物质 充足的营养物质可以为细菌的新陈代谢及生长繁殖提供必要的原料和充足的能量。 氢离子浓度(pH) 每种细菌都有一个可生长的pH范围, 以及最适生长pH。大多数嗜中性细菌生长的pH范围是6.0~8.0,嗜酸性细菌最适生长 pH可低至3.0,嗜碱性细菌最适生长pH可高达10.5。多数病原菌最适pH为7.2~7.6 温度 各类细菌对温度的要求不一。藉此分为嗜冷菌(psychrophile),其生长范围-5~30℃,最适生长为10~20℃;嗜温菌(mesophile),生长范围10~45℃,最适20~40℃;嗜热菌(thermophile),生长范围25~
30、95℃,最适50~60℃。病原菌在长期进化过程中适应人体环境,均为嗜温菌,最适生长温度为人的体温,即37℃。 气体 根据细菌代谢时对分子氧的需要与否,可以分为四类。 1.专性需氧菌(obligate aerobe) 具有完善的呼吸酶系统,需要分子氧作为受氢体以完成需氧呼吸,仅能在有氧环境下生长。如结核分枝杆菌、霍乱弧菌。 2.微需氧菌(microaerophilic bacterium) 在低氧压(5%~ 6%)生长最好,氧浓度>10%对其有抑制作用。如空肠弯曲菌、幽门螺杆菌。 3.兼性厌氧菌(facultative anaerobe) 兼有需氧呼
31、吸和无氧发酵两种功能,不论在有氧或无氧环境中都能生长,但以有氧时生长较好。大多数病原菌属于此。 4.专性厌氧菌(obligate anaerobe) 缺乏完善的呼吸酶系统,利用氧以外的其他物质作为受氢体,只能在无氧环境中进行发酵。有游离氧存在时,不但不能利用分子氧,且还将受其毒害,甚至死亡。如破伤风梭菌、脆弱类杆菌。 渗透压 一般培养基的盐浓度和渗透压对大多数细菌是安全的,少数细菌如嗜盐菌(halophilic bacterium)需要在高浓度(3%)的NaCl环境中生长良好。 五、细菌的生长繁殖 细菌的生长繁殖表现为细菌的组分和数量的增加。 细菌个体的生长繁殖
32、 细菌一般以简单的二分裂方式(binary fission)进行无性繁殖。在适宜条件下,多数细菌繁殖速度很快。细菌分裂数量倍增所需要的时间称为代时(generation time),多数细菌为20~30 min。个别细菌繁殖速度较慢,如结核分枝杆菌的代时达18~20 h。 细菌群体的生长繁殖 细菌生长速度很快,一般细菌约20 min分裂一次。若按此速度计算,一个细胞经7 h可繁殖到约200万个,10 h后可达10亿以上,细菌群体将庞大到难以想象的程度。但事实上由于细菌繁殖中营养物质的逐渐耗竭,有害代谢产物的逐渐积累,细菌不可能始终保持高速度的无限繁殖。经过一段时间后,细菌繁殖速度渐减,死亡
33、菌数增多,活菌增长率随之下降并趋于停滞。 将一定数量的细菌接种于适宜的液体培养基中,连续定时取样检查活菌数,可发现其生长过程的规律性。以培养时间为横坐标,培养物中活菌数的对数为纵坐标,可绘制出一条生长曲线(growth curve)。 根据生长曲线,细菌的群体生长繁殖可分为四期: 1.迟缓期(lag phase) 细菌进入新环境后的短暂适应阶段。该期菌体增大,代谢活跃,为细菌的分裂繁殖合成并积累充足的酶、辅酶和中间代谢产物;但分裂迟缓,繁殖极少。迟缓期长短不一,按菌种、接种菌的菌龄和菌量,以及营养物等不同而异,一般为1~ 4 h。 2.对数期(logarithmic
34、 phase) 细菌在该期生长迅速,活菌数以恒定的几何级数增长,生长曲线图上细菌数的对数呈直线上升,达到顶峰状态。此期细菌的形态、染色性、生理活性等都较典型,对外界环境因素的作用敏感。因此,研究细菌的生物学性状(形态染色、生化反应、药物敏感试验等)应选用该期的细菌。一般细菌对数期在培养后的8~18h。 3.稳定期(stationary phase) 由于培养基中营养物质消耗,有害代谢产物积聚,该期细菌繁殖速度渐减,死亡数逐渐增加,细菌形态、染色性和生理性状常有改变。一些细菌的芽胞、外毒素和抗生素等代谢产物大多在稳定期产生。 4.衰亡期(decline phase) 稳
35、定期后细菌繁殖越来越慢,死亡数越来越多,并超过活菌数。该期细菌形态显著改变,出现衰退型或菌体自溶,难以辨认;生理代谢活动也趋于停滞。 细菌生长曲线只有在体外人工培养的条件下才能观察到。在自然界或人类、动物体内繁殖时,受多种环境因素和机体免疫因素的多方面影响,不可能出现在培养基中的那种典型的生长曲线。 细菌的生长曲线在研究工作和生产实践中都有指导意义。掌握细菌生长规律,可以人为地改变培养条件,调整细菌的生长繁殖阶段,更为有效地利用对人类有益的细菌。例如在培养过程中,不断地更新培养液和对需氧菌进行通气,使细菌长时间地处于生长旺盛的对数期(称为连续培养)。 第三节 细菌的人工培养
36、 了解细菌的生理需要,掌握细菌生长繁殖的规律,可用人工方法提供细菌所需要的条件来培养细菌 ,以满足不同的需求。 一、 培养细菌的方法 人工培养细菌,除需要提供充足的营养物质使细菌获得生长繁殖所需要的原料和能量外,尚要有适宜的环境条件,如酸碱度、渗透压、温度和必要的气体等。 根据不同标本及不同培养目的,可选用不同的接种和培养方法。常用的有细菌的分离培养和纯培养两种方法。病原菌的人工培养一般采用35~37℃,培养时间多数为18~24 h,但有时需根据菌种及培养目的作最佳选择,如细菌的药物敏感试验则应选用对数期的培养物。 二、 培养基 培养基(culture
37、 medium)是由人工方法配制而成的,专供微生物生长繁殖使用的混合营养物制品。培养基一般pH为7.2~7.6,少数的细菌按生长要求调整pH偏酸或偏碱。许多细菌在代谢过程中分解糖类产酸,故常在培养基中加入缓冲剂,以保持稳定的pH。培养基制成后必须经灭菌处理。 培养基按其营养组成和用途不同,分为以下几类: 基础培养基 基础培养基(basic medium)含有多数细菌生长繁殖所需的基本营养成分。它是配制特殊培养基的基础,也可作为一般培养基用。如营养肉汤(nutrient broth)、营养琼脂(nutrient agar)、蛋白胨水等。 选择培养基 在培养基中加入
38、某种化学物质,使之抑制某些细菌生长,而有利于另一些细菌生长,从而将后者从混杂的标本中分离出来,这种培养基称为选择培养基。 鉴别培养基 用于培养和区分不同细菌种类的培养基称为鉴别培养基(differential medium)。用于鉴别细菌。如常用的糖发酵培养基。 此外,还可根据对培养基成分了解的程度将其分为两大类:化学成分确定的培养基(defined medium),又称为合成培养基(synthetic medium);和化学成分不确定的培养基(undefined medium),又称天然培养基(complex medium)。也可根据培养基的物理状态的不同分为液体、固体和半固
39、体 三大类。在液体培养基中加入1.5%的琼脂粉,即凝固成固体培养基;琼脂粉含量在0.3%~0.5%时,则为半固体培养基。琼脂在培养基中起赋形剂作用,不具营养意义。液体培养基可用于大量繁殖细菌,但必须种入纯种细菌;固体培养基常用于细菌的分离和纯化;半固体培养基则用于观察细菌的动力和短期保存细菌。 三、细菌在培养基中的生长情况 在液体培养基中生长情况 大多数细菌在液体培养基生长繁殖后呈现均匀混浊状态;少数链状的细菌则呈沉淀生长;枯草芽胞杆菌、结核分枝杆菌等专性需氧菌呈表面生长,常形成菌膜。 在固体培养基中生长情况 将培养物划线接种在固体培养基的表面,经过18~24 h培养后,单个
40、细菌分裂繁殖成一堆肉眼可见的细菌(菌落 colony)。挑取一个菌落,移种到另一培养基中,生长出来的细菌均为纯种(纯培养 pure culture)。这是从临床标本中检查鉴定细菌很重要的第一步。各种细菌在固体培养基上形成的菌落,在大小、形状、颜色、气味、透明度、表面光滑或粗糙、湿润或干燥、边缘整齐与否,以及在血琼脂平板上的溶血情况等均有不同表现,这些有助于识别和鉴定细菌。 在半固体培养基中生长情况 半固体培养基粘度低,有鞭毛的细菌在其中仍可自由游动,沿穿刺线呈羽毛状或云雾状混浊生长。无鞭毛细菌只能沿穿刺线呈明显的线状生长。 四.人工培养细菌的用途 在医学中的
41、应用 细菌培养对疾病的诊断、预防、治疗和科学研究都具有重要的作用。 1.感染性疾病的病原学诊断 明确感染性疾病的病原菌必须取病人有关标本进行细菌分离培养、鉴定和药物敏感试验,其结果可指导临床用药。 2.细菌学的研究 有关细菌生理、遗传变异、致病性和耐药性等研究都离不开细菌的培养和菌种的保存等。 3.生物制品的制备 供防治用的疫苗、类毒素、抗毒素、免疫血清及供诊断用的菌液、抗血清等均来自培养的细菌或其代谢产物。 在工农业生产中的应用 细菌培养和发酵过程中多种代谢产物在工农业生产中有广泛用途,可制成抗生素、维生素、氨基酸、有机溶剂、酒、酱油、味精
42、等产品。细菌培养物还可生产酶制剂,处理废水和垃圾,制造菌肥和农药等。 在基因工程中的应用 将带有外源性基因的重组DNA转化给受体菌,使其在菌体内能获得表达。细菌操作方便,容易培养,繁殖快,基因表达产物易于提取纯化,故可以大大地降低成本。如应用基因工程技术已成功地制备了胰岛素、干扰素、乙型肝炎疫苗等。 第五节 细菌的分类 一、细菌的分类原则与层次 细菌分类学是一个古老的、传统的学科,又是一个现代化的、发展的学科。细菌的分类原则上分为传统分类和种系分类两种。 国际上最具权威性的细菌分类系统专著“伯杰氏系统细菌学手册(1984)”和“伯杰氏鉴定细菌学手册,第9版(1994)。
43、 细菌的分类层次与其他生物相同,也是界、门、纲、目、科、属、种。在细菌中常用属和种。 二、细菌的命名法 细菌的命名采用拉丁双名法,每个菌名由两个拉丁字组成。前一字为属名,用名词,大写;后一字为种名,用形容词,小写。一般属名表示细菌的形态或发现或有贡献者,种名表明细菌的性状特征、寄居部位或所致疾病等。中文的命名次序适与拉丁文相反,是种名在前,属名在后。有时泛指某一属细菌,不特指其中某个菌种,则可在属名后加sp.(单数)或spp 第3章 消毒与灭菌 细菌为单细胞生物,极易受外界条件的影响。若环境适宜,生长繁殖极为迅速;若环境变化过剧,细菌因代谢障碍而生长受到抑制,其至死亡。根据这
44、一现象,可以采用多种物理、化学或生物学方法来抑制或杀死外环境中的病原微生物,以切断传播途径,从而控制或消灭传染病。另外,微生物学实验室和外科手术室等为防止微生物的污染或感染,也需杀灭物品或器械上的微生物。以下术语常用来表示物理或化学方法对微生物的杀灭程度。 消毒(disinfection) 杀死物体上病原微生物的方法,并不一定能杀死含芽胞的细菌或非病原微生物。用以消毒的药品称为消毒剂(disinfectant)。一般消毒剂在常用的浓度下,只对细菌的繁殖体有效,对其芽胞则需要提高消毒剂的浓度和延长作用的时间。 灭菌(sterilization) 杀灭物体上所有微生物的方法。灭菌比消毒要求高,
45、包括杀灭细菌芽胞在内的全部病原微生物和非病原微生物。 抑菌(bacteriostasis) 抑制体内或体外细菌的生长繁殖。常用的抑菌剂(bacteriostat)为各种抗生素,可在体内抑制细菌的繁殖,或在体外用于抑菌试验以检测细菌对抗生素的敏感性。 防腐(antisepsis) 防止或抑制体外细菌生长繁殖的方法。细菌一般不死亡。使用同一种化学药品在高浓度时为消毒剂,低浓度时常为防腐剂。 无菌(asepsis) 不存在活菌的意思。防止细菌进入人体或其它物品的操作技术,称为无菌操作。例如进行外科手术时需防止细菌进入创口,微生物学实验中要注意防止污染和感染。 第一节 物理消毒灭菌法
46、消毒与灭菌的方法一般可分为物理学方法和化学方法两大类。用于消毒灭菌的物理因素有热力、紫外线、辐射、超声波、滤过、干燥和低温等。 一、热力灭菌法 高温对细菌具有明显的致死作用,因此最常用于消毒和灭菌。多数无芽胞细菌经55~60℃作用30~60min后死亡。湿热80℃经5~10min可杀死所有细菌繁殖体和真菌。细菌的芽胞对高温有很强的抵抗力,例如炭疽芽胞杆菌的芽胞,可耐受5~10min煮沸,肉毒梭菌的芽胞则需煮沸3~5h才死亡。 热力灭菌法分干热灭菌和湿热灭菌两大类,在同一温度下,后者的效力比前者大。这是因为:①湿热中细菌菌体蛋白较易凝固;②湿热的穿透力比干热大;③湿热的蒸气有潜热存在。水由
47、气态变为液态时放出的潜热,可迅速提高被灭菌物体的温度。 干热灭菌法 干热的杀菌作用是通过脱水干燥和大分子变性。一般细菌繁殖体在干燥状态下, 80~100℃经h可被杀死;芽胞则需160~170℃经2h才死亡。 1.焚烧 直接点燃或在焚烧炉内焚烧。是一种彻底的灭菌方法,但仅适用于废弃物品或动物尸体等。 2.烧灼 直接用火焰灭菌,适用于微生物学实验室的接种环、试管口等的灭菌。 3.干烤 利用干烤箱灭菌,一般加热至160~170℃经2 h。适用于高温下不变质、不损坏、不蒸发的物品,例如玻璃器皿、瓷器、玻质注射器等的灭菌。 4.红外线 红外线是一种0.77~1000μm波长的电磁波,
48、尤以1~10μm波长的热效应最强。但热效应只能在照射到的表面产生,因此不能使物体均匀加热。红外线的杀菌作用与干热相似,利用红外线烤箱灭菌所需的温度和时间亦同于干烤。此法多用于医疗器械的灭菌。 湿热灭菌法 1.巴氏消毒法(pasteurization) 用较低温度杀灭液体中的病原菌或特定微生物,而仍保持物品中所需的不耐热成分不被破坏的消毒方法。此法由巴斯德创用以消毒酒类,故名。目前主要用于牛乳等消毒。方法有两种:一是加热至61.1~62.8℃min;另一是71.7℃经15~30s钟,今广泛采用后法。 2.煮沸法 在1个大气压下,水的煮沸温度为100℃,一般细菌的繁殖体5min能被杀死,细
49、菌芽胞常需煮沸1~2h才被杀灭。此法常用于消毒食具、刀剪、注射器等。水中加入2%碳酸钠,既可提高沸点达105℃,促进芽胞的杀灭,又可防止金属器皿生锈。 3. 流动蒸气消毒法 又称常压蒸气消毒法,是利用一个大气压下100℃的水蒸气进行消毒。细菌繁殖体经15~30min可被杀灭,但芽胞常不被全部杀灭。该法常用的器具是Arnold消毒器,我国的蒸笼具有相同的原理。 4. 间歇蒸气灭菌法(fractional sterilization) 利用反复多次的流动蒸气间歇加热以达到灭菌的目的。将需灭菌物置于流通蒸汽灭菌器内,100℃加热15~30min,杀死其中的繁殖体;但芽胞尚有残存。取出后放37℃
50、孵箱过夜,使芽胞发育成繁殖体,次日再蒸一次,连续三次以上,可达到灭菌的效果。此法适用于一些不耐高热的含糖、牛奶等培养基。若有些物质不耐100℃,则可将温度减低至75~80℃,每次加热时间延长至30~60min,次数增加至3次以上,也可达到灭菌目的。 5.高压蒸气灭菌法 是一种最有效的灭菌方法。灭菌的温度取决于蒸气的压力。在一个大气压下,蒸气的温度是100℃。如果蒸气被限制在密闭的容器中,随着压力升高,蒸气的温度也相应升高。在103.4kPa(1.05kg/cm2)蒸气压下,温度达到121.3℃,维持15~20min,可杀灭包括细菌芽胞在内的所有微生物。高压蒸汽灭菌器(autoclave)就
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4009-655-100 投诉/维权电话:18658249818