ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:768.50KB ,
资源ID:9875027      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9875027.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(认知无线电网络的一个新的合作频谱感知算法.doc)为本站上传会员【鼓***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

认知无线电网络的一个新的合作频谱感知算法.doc

1、 毕业设计(论文)外文文献翻译 认知无线电网络的一个新的合作频谱感知算法 摘要 该文提出了一种在认知无线网络控制信道带宽受限条件下基于信任度的双门限协同频谱感知算法。首先每个认知用户基于双检测门限独立进行频谱感知,但只有部分可靠的认知用户通过控制信道向认知无线网络基站发送本地感知结果。当所有的用户都不可靠时,选取信任度最高的认知用户发送本地感知结果进行判决。理论分析和仿真表明,同常规能量检测算法相比较,该算法能够在控制信道带宽受限条件下,以较少的网络开销获得更好的频谱感知性能。 关键词:认知无线电;频谱感知;信任度;双门限 1引言 随着无线通信技术的飞速发展,有限的频谱资源与不断

2、增长的无线通信需求的矛盾越来越突出。然而根据现有的固定分配频谱资源策略,绝大多数频谱资源得不到有效利用。据FCC 的调查统计,70%的已分配频谱资源没有得到有效利用。为了提高频谱资源的利用率,认知无线电技术由Joseph Mitola Ⅲ 提出并得到了广泛的关注。频谱感知技术是认知无线电网络的支撑技术之一。通常它又可以分为能量检测法、匹配滤波器法和循环平稳特征法[4]。能量检测算法因为应用简单且无需知道任何授权用户信号的先验知识成为研究热点。认知用户在接入授权频带之前,必须首先感知该频带空闲即授权用户没有工作,否则会对授权用户造成干扰。一旦授权用户重新工作,认知用户必须退避,实现在不对授权用户

3、产生干扰的情况下对频谱资源的共享。由于实际信道中的多径和阴影效应,单个认知用户频谱感知的性能并不乐观,针对这个问题D. Cabric等人提出了协同频谱感知算法[5]-[6]。协同频谱感知算法性能较好,但是当认知用户数量很大的时候,控制信道的带宽将不够用。文献[7]中提出了一种在控制信道带宽受限条件下的基于双检测门限的频谱感知算法,该算法能够以较小的网络开销,获得接近普通单门限频谱检测算法的性能。针对认知无线电频谱感知的需要,本文提出了认知无线电环境下一种基于信任度的双门限协同频谱感知算法。该算法中每个认知用户基于双检测门限独立进行频谱感知,但只有部分可靠的认知用户通过控制信道向认知无线网络基站

4、发射感知报告。当所有的用户都不可靠时,选取信任度最高的认知用户发射感知报告进行判决。本文对该算法进行了性能分析并通过仿真表明,本文方法比较常规能量检测算法,在减小网络开销的同时提高了检测性能。 2系统模型 假设一个认知无线电网络有N个认知用户和一个认知无线网络基站,如图1 所示。认知无线网络基站负责管理和联系N个认知用户,在收到认知用户的检测报告后做出最终判决。 图1. 认知无线电网络示意图 频谱感知的实质是一个二元假设问题,即 (1) 其中x(t)代表认知用户接收到的信号,s(t)表示授权

5、用户的发送信号,h(t)代表授权用户与认知用户之间信道的衰落因子。代表授权用户没有工作,代表授权用户正在工作。设是认知用户接收信号的能量,根据能量检测理论[8],服从以下分布: (2) 其中表示瞬时信噪比,并且其服从均值为的指数分布,表自由度为2m的中心卡方分布,代表自由度为非中心参数为的卡方分布,表示时间带宽积。 在能量检测算法本地判决中,每个认知用户把接收到的能量跟预设的门限进行比较,如图2(a)所示。当时,本地能量检测器做出本地判决,表示授权用户在工作,否则判决 D 为 0。而双门限能

6、量检测算法本地判决如图3(b)所示,本地能量检测器判决规则如下: (3) 其中ND表示认知用户接受到的能量值不可靠,认知用户不作出任何判决,发送感知报告给认知无线电网络基站。如果出现所有认知用户都不作出判决的情况,则选择信用度最高的认知用户依据单门限能量检测算法作出本地判决。并发送感知报告给认知无线电网络基站。 本地判决D=0 本地判决D=1 (a) (b) 0 本地判决D=0 本地判决D=1 ND 0 图2.(a)一般能量检测算法本地判决示意图 (b)双门限能量检测算法

7、本地判决示意图 信用度获取方法采取文献[9]的方法:在最开始阶段,认知无线电网络基站把每个认知用户数目的可信度设为0,当某认知用户本地判决结果与认知无线电网络基站的最终判决结果一致时,该认知用户可信度加1,否则减1。假设认知用户i的可信度是,则其更新过程如(4): (4) 其中是认知用户传送给认知无线电网络基站的判决结果,是认知无线电网络基站的最终判决结果。 据文献[8]可知,认知用户在高斯信道下的平均检测概率、平均漏检概率和平均虚警概率如下所示:

8、 (5) (6) (7) 出于对授权用户的保护,认知无线电网络基站最终采用OR准则作出判决。 3频谱感知性能分析 3.1网络开销 在1bit量化条件下,代表归一化平均感知位数,和分别代表K个已向认知无线电网络基站发送数据和N-K个未向认知无线电网络基站发送报告。 则:,。设和,则划归一划平均感知位数如式8所示: (8) 定义:, 则:

9、 (9) 由9式可得: 可知:基于双门限的协同频谱检测算法的网络开销始终小于常规的能量检测算法。 3.2检测性能分析 设和别表示 在假设和下的概率分布,则根据文献[10]可知: (10) = (11) 显然,。假设,分别代表在授权用户在工作和授权用户未工作情况下没有认知用户发送感知报告,即当K=0时,则: (12) (13) 基于双门限的频谱感知算法在瑞利信道下的虚警概率,漏检概率和检测概率分别

10、为: (14) = (15) (16) 其中: = = (17) (18) 则: (19)

11、 (20) 由上式可知当=0时,此算法与常规算法相同。当参与协同的认知用户数目N较大时,,则基于双门限的频谱检测算法的检测性能与常规能量算法的检测性能近似,可知在控制信道带宽受限制的情况下以较小的性能损失大大降低了网络开销。 4 仿真及分析 本节通过计算机仿真来评估所提出的基于信任度的双门限协同频谱感知算法的性能。仿真参数设置如表1 所示。 表1 仿真参数设置 参数 数值 认知用户数目 平均信噪比 时间带宽积 授权用户占用信道概率 授权用户不占用信道概率 图3 给出了在的情况下算法的检测性能。可以看出同常规能量检测算法相比较

12、本文所提出算法的检测性能得到了明显的改善。例如当时,基于信任度的双门限协同频谱感知算法的检测概率比常规能量检测算法高出0.019。 图3检测性能示意图 图4 描述了在不同的条件下,基于信任度的双门限协同频谱感知算法对网络开销的影响。同常规能量检测算法即=0时相比较,本文所提出算法的归一化平均感知位数急剧下降,控制信道带宽与认知用户数量之间的矛盾得到了缓解。例如当,= 0.01 时,基于信任度的双门限协同频谱感知算法的归一化平均感知位数下降了38%。当,=0.001时,归一化平均感知位数则下降了44% 图4 不同条件下算法对网络开销的影响 5结束语 频谱感知技术是认知

13、无线电网络的支撑技术之一。当认知用户数量很大的时候,控制信道的带宽将不够用。本文提出了认知无线电环境下一种基于信任度的双门限协同频谱感知算法。每个认知用户基于双检测门限独立进行频谱感知,但只有部分可靠的认知用户通过控制信道向认知无线网络基站发射感知报告。当所有的用户都不可靠时,选取信任度最高的认知用户发射感知报告进行判决。本文对该算法进行了性能分析并通过仿真表明,本文方法比较常规能量检测算法,在减小网络开销的同时提高了检测性能。 参考文献 [1] Federal Communications Commission. Spectrum Policy Task Force, Rep. ET D

14、ocket no. 02-135 [R]. Nov. 2002. [2] J. Mitola and G. Q. Maguire. Cognitive radio: Making software radios more personal[C],IEEE Personal Communication. vol. 6, pp. 13–18, Aug. 1999. [3] S. Haykin. Cognitive radio: brain-empowered wireless communications [J]. IEEE J. Sel. Areas Communication. vol.

15、23, pp. 201–220, Feb. 2005. [4] AKYLDIZ IF. Next generation/dynamic spectrum access/cognitive radio wireless networks: A Survey [J]. ELSEVIER Computer Networks, 2006(50):2127-2159. [5] D. Cabric, S. M. Mishra, and R. W. Brodersen. Implementation issues in spectrum sensing for cognitive radios[C]//

16、 in Proc. Of A silomar Conf. on Signals, Systems, and Computers, Pacific Grove,CA, USA, Nov. 7-10, 2004, pp. 772 - 776. [6] A.Ghasemi and E. S. Sousa. Collaborative spectrum sensing for opportunistic access in fading environments[C]// in Proc. 1st IEEES ymp. New Frontiers in Dynamic Spectrum Acces

17、s Networks, Baltimore, USA, Nov. 8–11, 2005, pp. 131–136. [7] Chunhua Sun, Wei Zhang, Letaief K.B. Cooperative spectrum sensing for cognitive radios under bandwidth constraints[C]// in Proc. IEEE WCNC, March 11-15, 2007, pp. 1-5. [8] H. Urkowitz. Energy detection of unknown deterministic signals [

18、C]. Proceedings of IEEE, vol.55, pp. 523-531, April 1967. [9] Ruiliang Chen, Jung-Min Park, Kaigui Bian. Robust Distributed Spectrum Sensing in Cognitive Radio Networks[C]. in Proc. IEEEINFOCOM, April 2008, pp. 1876-1884. [10] F. F. Digham, M. -S. Alouini, and M. K. Simon. On the energy detection

19、of unknown signals over fading channels[C]. in Proc. IEEE ICC, Anchorage, AK, USA, May 11-15, 2003, pp. 3575–3579. 附原文: A New Cooperative Spectrum Sensing Algorithm for Cognitive Radio Networks Abstract—spectrum sensing is a critical phase in bui

20、lding a cognitive radio network. However, the bandwidth for reporting secondary users’ sensing results will be insufficient, when the number of secondary user is very large. In this paper, we propose a new cooperative spectrum sensing algorithm to alleviate the bandwidth problem of reporting channel

21、 Compared with conventional method, only the secondary users with reliable information are allowed to report their sensing results. When no user with reliable information, only the secondary user with highest reputation will report its sensing result. Simulation results show that our algorithm achi

22、eves better sensing performance and the average number of sensing bits decrease greatly. Keywords—cognitive radio; cooperative spectrum sensing; double threshold; reputation Ⅰ. INTRODUCTION Due to the increasingly development of wireless applications, more and more spectrum resources are needed

23、 to support numerous emerging wireless service. However, recent measurements by Federal Communication Commission (FCC) have shown that 70% of the allocated spectrum in US is not utilized [1]. In order to increase the efficiency of spectrum utilization, cognitive radio technology was recently propos

24、ed [2], [3]. A requirement of cognitive radios is that their transmission should not cause harmful interference to primary users. Namely, the secondary users can use the licensed spectrum as long as the primary user is absent. However, when the primary user comes back into operation, the second

25、ary users should vacate the spectrum instantly to avoid interference with the primary user. Accordingly, spectrum sensing is a crucial phase in building a cognitive radio system. One of the great challenges of implementing spectrum sensing is the hidden terminal problem which caused by the fadin

26、g of the channels and the shadowing effects. In order to deal with the hidden terminal problem, cooperative spectrum sensing has been studied to improve the spectrum sensing performance [4], [5]. In[6], due to control channel for each cognitive radio to report its sensing result is usually bandwidth

27、 limited, a censoring method which has two thresholds is given to decrease the average number of sensing bits to the common receiver. By censoring the collected local observations, only the secondary users with enough information will send their local decisions to the common receiver. In this p

28、aper, we present a new double threshold cooperative spectrum sensing method with reputation. In our system, every cognitive user will firstly obtain an observation independently and only the users with reliable information send their local decisions to the common receiver based on double thresholds

29、 If no user is reliable, only the cognitive user with the highest reputation is selected to sense the spectrum. Simulation results show that the spectrum sensing performance under AWGN channels is improved and the communication traffic is also reduced as opposed to the conventional method.

30、The rest of the paper is organized as follows. In section Ⅱ, system model is briefly introduced. Sensing performance is analyzed in Section Ⅲ. In Section Ⅳ, we present the simulation results of our cooperative spectrum sensing method. Finally, we draw our conclusions in Section Ⅴ. II. SYSTEM MODEL

31、 In cognitive radio systems, spectrum sensing is a critical element as it should be firstly performed before allowing secondary users to access a vacant licensed channel. Cooperative spectrum sensing has been widely used to detect the primary user with a high agility and accuracy. The essence of s

32、pectrum sensing is a binary hypothesis-testing problem: :primary user is absent; :primary user is present. For implementation simplicity, we restrict ourselves to energy detection in the spectrum sensing. The local spectrum sensing is to decide between the following two hypotheses:

33、 (1) Where is the signal received by secondary user, is primary user’s transmitted signal,is AWGN, and is the temporary amplitude gain of the channel. According to energy detection theory [7], we have the following distribution:

34、 (2) Where is the energy value collected by secondary user, is instantaneous SNR and follows exponentially distribution with the mean value , is the time bandwidth product of the energy detector,represents a central chi-square distribution with 2m degrees of freedom and. repres

35、ents a non-central chi-square distribution with degrees of freedom and a non-centrality parameter . In conventional energy detection method, the local decision is made by comparing the observation with a pre-fixed threshold as Fig.1 (a). When the collected energy exceeds the threshold , decision

36、 will be made. Otherwise decision will be made. In contrast, the system model which has two thresholds of our interest is shown inFig.1 (b). Where “ Decision ” and “Decision ” represent the absence and the presence of licensed user, respectively.“No decision” means that the observation is not reli

37、able enough and the th cognitive user will send nothing to the common receiver. But when all the secondary users don’t send their local decisions, only the cognitive user with the highest reputation is selected to sense spectrum based on conventional energy detection method, and send its local decis

38、ion to the common receiver. Reputation is obtained based on the accuracy of cognitive user’s sensing results. The reputation value is set to zero at the beginning. Whenever its local spectrum sensing report is consistent with the final sensing decision, its reputation is incremented by one; oth

39、erwise it is decremented by one. Under this rule, assuming the th cognitive user’s reputation value is 1, the last sensing report of cognitive user send to common receiver is , and the final decision is ,then is updated according to the following relation: For the cognitive radio users with th

40、e energy detector, the average probabilities of detection, the average probabilities of missed detection, and the average probabilities of false alarm over AWGN channels are given, respectively, by [7]: (3) (4)

41、 (5) Where , are complete and incomplete gamma function respectively, and is the generalized Marcum function. In this paper, we consider cooperative spectrum sensing with 1bit quantization. Let represent the normalized D=0 D=1 (a) (b) 0 D

42、0 D=1 ND 0 Fig1. (a)Conventional detection method (b)Double threshold energy detection method average number of sensing bit. Let and represent he event that there are K unlicensed users reporting 1-bit decision and N-K users n

43、ot reporting to the common receiver, respectively. The , .and then the average number of sensing bits for our method can be derived as: (6) For simplicity, we define: , (7) Let denote the normalized average number of sensing bits, then, we obtain as follows:

44、 (8) From (8), It can be seen that, the normalized average number of sensing bits is always smaller than 1. the communication traffic of our method is are deduced as opposed to the conventional energy detection method. III. THE PERFORMANCE ANALYSIS OF SPECTRUM SENS

45、ING In this section, the spectrum sensing performance of the proposed method will be analyzed. Assume the control channel between the unlicensed users and the common receiver is perfect, the local decisions are reported without any error. Let and denote the cumulative distribution function (CD

46、F) of the local test statistic under the hypothesis and , respectively. Then, we have [10]: (9) (10) Obviously,,. If no any local decision is reported to the common receiver, i.e., K=0 , we call that fail sensing. For this case, the common

47、 receiver will request the user which has the highest reputation to send its local decision based on conventional energy detection method. Let and denote the probability of fail sensing under hypothesis and , respectively. Here we have: (11) (12) Apparently, and .In our sche

48、me, the false alarm probability ,the detection probability,and the missing probability : (13) = (14) (15) For simplicity, we assume the channel between the unlicensed users and the base station are ideal, the local decision will b

49、e reported without any error. So stand for the probability of the event that under hypothesis , all the K users claim and other N-K users make no local decisions. = = (16)

50、 (17) (18) (19) IV. SIMULATION RESULTS In this section, some simulation results are presented to illustrate the system performance of our cooperative spectrum sensing algorithm based on reputation. The resu

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服