ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:108.50KB ,
资源ID:9867356      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9867356.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(时间序列实验指导书正文范文.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

时间序列实验指导书正文范文.doc

1、 时间序列实验指导书正文 20 2020年4月19日 文档仅供参考 实验一 平稳性与纯随机性检验 一、实验目的 经过本实验,使学生 (1)掌握时序图的绘制方法; (2)能够判断时间序列的平稳性; (3)能够检验时间序列的纯随机性。 二、实验要求 根据数据作图,采用时序图检验和自相关图直观判断序列是否平稳,利用LB统计量检验时间序列是否为纯随机性序列,并按具体的题目要求完成实验报告。 三、实验内容 实验题目:1945-1950年费城月度降雨量数据如下(单位:mm),见下表。 69.3 80.0 40.9 74.9 84.6 101

2、1 225.0 95.3 100.6 48.3 144.5 128.3 38.4 52.3 68.6 37.1 148.6 218.7 131.6 112.8 81.8 31.0 47.5 70.1 96.8 61.5 55.6 171.7 220.5 119.4 63.2 181.6 73.9 64.8 166.9 48.0 137.7 80.5 105.2 89.9 174.8 124.0 86.4 136.9 31.5 35.3 112.3 143.0 160.8 97.0 80.5 62.5 158.2 7.6 165.9 106.7 92.2 63.2 26.2 77.0

3、 52.3 105.4 144.3 49.5 116.1 54.1 148.6 159.3 85.3 67.3 112.8 59.4 (1) 计算该序列的样本自相关系数(k=1,2,……,24)。 (2) 判断该序列的平稳性。 (3) 判断该序列的纯随机性。 实验步骤: 第一步: 编程建立SAS数据集。 第二步: 利用Gplot程序对数据绘制时序图。 第三步: 从时序图中利用平稳时间序列的定义判断是否平稳。 第四步: 利用ARIMA程序对数据进行分析,根据输出的Identify语句中的样本自相关图,由平稳时间序列的特性判断是否平稳。 第五步: 根据输出的Identify语句中

4、的纯随机检验结果,利用LB统计量和白噪声特性检验时间序列是否为纯随机序列。 实验二 ARMA模型的应用 一、实验目的 经过本实验,使学生能够运用SAS统计软件,对给出实际问题的平稳时间序列经过模型识别、参数估计、模型检验、模型优化等过程,建立符合实际的时间序列模型,并预测将来。 二、实验要求 处理数据,掌握平稳时间序列的ARMA模型的建模过程和方法,并根据具体的实验题目要求完成实验报告。 三、实验内容 实验题目:某地区连续74年的谷物产量(单位:千吨)如下: 0.97 0.45 1.61 1.26 1.37 1.43 1.32 1.23 0.84 0.89 1.18

5、 1.33 1.21 0.98 0.91 0.61 1.23 0.97 1.10 0.74 0.80 0.81 0.80 0.60 0.59 0.63 0.87 0.36 0.81 0.91 0.77 0.96 0.93 0.95 0.65 0.98 0.70 0.86 1.32 0.88 0.68 0.78 1.25 0.79 1.19 0.69 0.92 0.86 0.86 0.85 0.90 0.54 0.32 1.40 1.14 0.69 0.91 0.68 0.57 0.94 0.35 0.39 0.45 0.99 0.84 0.62 0.85 0.73 0.66 0.7

6、6 0.63 0.32 0.17 0.46 (1) 判断该序列的平稳性与纯随机性。 (2) 选择适合模型拟合该序列的发展。 (3) 利用拟合模型,预测该地区未来5年的谷物产量。 实验步骤: 第一步:编程建立SAS数据集。 第二步:利用Gplot程序对数据绘制时序图。 第三步:从时序图中利用平稳时间序列的定义判断是否平稳?利用ARIMA程序对数据进行分析,根据输出的Identify语句中的样本自相关图,由平稳时间序列的特性判断是否平稳? 第四步:根据输出的Identify语句中的纯随机检验结果,利用LB统计量和白噪声特性检验时间序列是否为纯随机序列? 第五步:在序列

7、判断为平稳非白噪声序列后,求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。 第六步:根据样本自相关系数和偏自相关系数的性质,选择阶数适当的ARMA(p, q)模型进行拟合。 第七步:估计模型中未知参数的值。 第八步:检验模型的有效性。如果拟合模型通不过检验,转向步骤6,重新选择模型再拟合。 第九步:模型优化。如果拟合模型经过检验,依然转向步骤2,充分考虑各种可能建立多个拟合模型,从所有经过检验的拟合模型中选择最优模型。 第十步:利用最优拟合模型,预测序列的将来走势。 实验三 时间序列的线性与非线性趋势拟合 一、实验目的 经过本实验,使学生能够利用S

8、AS统计软件,对给出实际问题的非平稳时间序列进行分析,掌握非平稳时间序列的确定性部分的分离方法,建立合适的某一类确定性模型。 二、实验要求 处理数据,掌握非平稳时间序列的确定性模型的识别的方法,并根据具体的实验题目要求完成实验报告。 三、实验内容 实验题目:爱荷华州1948—1979年非农产品季度收入数据如表4—8所示。 601 604 620 626 641 642 645 655 682 678 692 707 736 753 763 775 775 783 794 813 823 826 829 831 830 838 854

9、 872 882 903 919 937 927 962 975 995 1001 1013 1021 1028 1027 1048 1070 1095 1113 1143 1154 1173 1178 1183 1205 1208 1209 1223 1238 1245 1258 1278 1294 1314 1323 1336 1355 1377 1416 1430 1455 1480 1514 1545 1589 1634 1669 1715 1760 1812 1809 1828 1871 1892 1946 1983 2045 2048 2097 21

10、40 2171 2208 2272 2311 2349 2362 2442 2479 2528 2571 2634 2684 2790 2890 2964 3085 3159 3237 3358 3489 3588 3624 3719 3821 3934 4028 4129 4205 4349 4463 4598 4725 4827 4939 5067 5231 5408 5492 5653 5828 5965 经过分析数据,选择适当模型拟合该序列长期趋势。 实验步骤: 第一步:编程建立SAS数据集。 第二步:调用Gplot程序对数据绘制时序图。 第三步:从时序图中观察时间序列

11、是否有趋势,有何种趋势,选择适当的趋势模型分离数据中的确定性部分。 实验四 ARIMA模型 一、实验目的 经过本实验,使学生能够利用SAS统计软件,对给出实际问题的非平稳时间序列进行分析,经过平稳性检验、差分运算、白噪声检验、拟合ARMA模型,建立ARIMA模型,在此基础上进行预测。 二、实验要求 处理数据,掌握非平稳时间序列的ARIMA建模方法,并根据具体的实验题目要求完成实验报告。 三、实验内容 实验题目:某城市连续 的月度婴儿出生率数据如下表所示: 26.663 23.598 26.931 24.740 25.806 24.364 24.477 23.901 2

12、3.175 23.227 21.672 21.870 21.439 21.089 23.709 21.669 21.752 20.761 23.479 23.824 23.105 23.110 21.759 22.073 21.937 20.035 23.590 21.672 22.222 22.123 23.950 23.504 22.238 23.142 21.059 21.573 21.548 20.000 22.424 20.615 21.761 22.874 24.104 23.748 23.262 22.907 21.519 22.025 22.604 20.894 24

13、677 23.673 25.320 23.583 24.671 24.454 24.122 24.252 22.084 22.991 23.287 23.049 25.076 24.037 24.430 24.667 26.451 25.618 25.014 25.110 22.964 23.981 23.798 22.270 24.775 22.646 23.988 24.737 26.276 25.816 25.210 25.199 23.162 24.707 24.364 22.644 25.565 24.062 25.431 24.635 27.009 26.606 26.

14、268 26.462 25.246 25.180 24.657 23.304 26.982 26.199 27.210 26.122 26.706 26.878 26.152 26.379 24.712 25.688 24.990 24.239 26.721 23.475 24.767 26.219 28.361 28.599 27.914 27.784 25.693 26.881 26.217 24.218 27.914 26.975 28.527 27.139 28.982 28.169 28.056 29.136 26.291 26.987 26.589 24.848 27.5

15、43 26.896 28.878 27.390 28.065 28.141 29.048 28.484 26.634 27.735 27.132 24.924 28.963 26.589 27.931 28.009 29.229 28.759 28.405 27.945 25.912 26.619 26.076 25.286 27.660 25.951 26.398 25.565 28.865 30.000 29.261 29.012 26.992 27.897 (1)选择适当模型拟和该序列的发展 (2)使用拟合模型预测下一年度该城市月度婴儿出生率 实验步骤: 第一步:编程建立

16、SAS数据集; 第二步:调用Gplot程序对数据绘制时序图; 第三步:从时序图中利用平稳时间序列的定义判断是否平稳?调用ARIMA程序对数据进行分析,根据输出的Identify语句中的样本自相关图,由平稳时间序列的特性判断是否平稳; 第四步:若不满足平稳性,则可利用差分运算是否能使序列平稳?重复第三步步骤; 第五步:根据输出的Identify语句中的纯随机检验结果,利用LB统计量和白噪声特性检验最后处理的时间序列是否为纯随机序列? 第六步:在序列判断为平稳非白噪声序列后,求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值,选择阶数适当的ARIMA(p,d,q

17、模型进行拟合,并估计模型中未知参数的值。 第七步:检验模型的有效性。如果拟合模型通不过检验,转向步骤6,重新选择模型再拟合。 第八步:模型优化。如果拟合模型经过检验,依然转向步骤6,充分考虑各种可能建立多个拟合模型,从所有经过检验的拟合模型中选择最优模型。 第九步:利用最优拟合模型,预测下一年度该城市月度婴儿出生率。 实验五 Auto-Regressive模型 一、实验目的 经过本实验,使学生能够利用SAS统计软件,对给出实际问题的非平稳时间序列进行分析,经过确定性因素分解方法提取序列中主要的确定性信息、对残差序列拟

18、合自回归模型,建立Auto-Regressive模型。 二、实验要求 处理数据,掌握非平稳时间序列的Auto-Regressive建模方法,并根据具体的实验题目要求完成实验报告。 三、实验内容 实验题目:1952—1988年中国农业实际国民收入指数数据如下表所示。 100.0 101.6 103.3 111.5 116.5 120.1 120.3 100.6 83.6 84.7 88.7 98.9 111.9 122.9 131.9 134.2 131.6 132.2 139.8 142

19、 140.5 153.1 159.2 162.3 159.1 155.1 161.2 171.5 168.4 180.4 201.6 218.7 247 253.7 261.4 273.2 279.4 经过分析数据,选择适当Auto-Regressive模型拟合该序列。 实验步骤: 第一步:编程建立SAS数据集; 第二步:调用Gplot程序对数据绘制时序图。 第三步:从时序图中是否显示有明显的随时间线性增长的趋势,同时又有一定规律的波动?调用AUTOREG程序对数据进行分析,建立因变量关于时间的回归模型

20、和延迟因变量回归模型。 第四步:分别检验以上两种模型残差序列的自相关性,如果检验结果显示残差序列具有显著自相关性,建立残差自回归模型。并比较这两种残差自回归模型的优劣。 实验六 GARCH模型 一、实验目的 经过本实验,使学生能够利用SAS统计软件,对给出实际问题的非平稳时间序列进行分析,对异方差序列拟合GARCH模型。 二、实验要求 处理数据,掌握异方差序列的GARCH建模方法,并根据具体的实验题目要求完成实验报告。 三、实验内容 实验题目:某金融时间序列的数据如下表所示。 143.1 140.3 139.4 140.7 139.6 140.4 141.2 140

21、9 141.3 141.7 142.8 144.7 144.4 140.9 139.5 140.8 138.7 139 140 140.4 141.6 142.3 143.4 145.7 145.7 142.8 141.8 143.5 141.8 142.4 142.8 142.7 144.3 145.7 147.6 150.5 150.2 146.9 146 148 145.8 146.2 146.4 145.8 146.9 148.4 150.2 153.3 153.6 150.1 149.3 151.5 149.3 151.4 151.3 1

22、50.9 152.5 154.4 156.7 159 159.4 155.4 154.6 156.8 154.2 155.5 157.1 157 159.4 161.3 163.1 166.4 166.9 161.9 161.5 164.2 160.3 162.2 163.5 162.8 165.6 168.2 169.9 174.4 175.6 170.3 170.4 174.1 169.6 171.7 171 170 172.7 173.4 174.6 178.6 178.4 173.4 174.6 176.6 174.1 177.4 179.1 179

23、 181.7 183.9 185.7 190.3 189 184.9 185.4 189.3 186.5 190.2 191.9 191.4 193.9 196.3 199.6 204.8 205.9 199.3 199.8 203.6 199.4 202.3 203.3 201.5 203.2 205 207 211.4 212.9 204 205.5 210.1 206.2 208.9 210.1 210 212.8 214.4 216.7 222.2 222.6 216.6 218.6 223.7 221.1 225.2 227.5 225.

24、9 227.7 229.1 231.2 236.9 237.5 231.4 234.2 239.5 234.7 238.8 241.8 241.3 244.5 247 250.5 258.9 259.4 251.2 251.6 257 253.6 259.3 261.1 258.6 259.5 261.4 265.6 273.3 271.8 264.1 266.5 271.6 266.3 271.5 273.5 271 272.6 274.8 278.8 285.2 281.8 273.3 276.4 281.4 278.1 286 288 28

25、6.3 287.8 288.5 293.5 299 296.8 289 291.4 299.9 295.1 299.4 302.3 301 302.5 307 309.7 318.6 317.7 309 312.2 322.7 315.6 321.7 326.3 324.3 327.7 332 335.4 344.1 343.4 332 334.9 347.5 342.4 349.4 353.9 351.7 357 359.4 362.9 372.5 367.8 356.4 360.8 376.2 367.1 376.7 383.

26、3 381.9 385.6 387.7 389.8 398.6 390.7 380.9 382.4 387.1 377.8 387.6 394.8 398.5 404.9 411 416.1 419.8 416.5 405.7 412.5 431.3 418.6 423 427.9 426.1 427.3 429.8 435.2 447.2 448.7 432.6 435.8 451.3 441.1 446.5 449.6 450 456.4 466 474.5 486 483 474.2 482.9 498.7 494.1 503.7 510.

27、7 508.5 511.5 517.4 522.1 533.4 530.4 517.6 524.2 539.2 530.8 541.4 543.3 539 542.5 542.1 549.6 564.5 561.1 551.9 558.3 575 569.4 585.2 592 594.8 602.2 605.5 615.1 633.5 626.8 613.1 624.6 647.2 645.7 663.5 674 679.1 685.2 692.8 709.5 740.6 737.5 717.1 723.5 752.5 739.9 744.4 746.

28、8 745 745.2 753.7 756 765.9 764.7 745 752.1 778.3 763.8 778.8 785.6 781.3 780 780.8 787.1 803.2 793 772.3 775.2 791.3 767.2 773.8 781.7 777.4 778.5 784.5 791.4 811.9 802.4 788.3 796.2 818 797.3 810.8 812.9 814.5 818.9 817.6 826.1 844.3 833.2 823.4 835 852.9 841.9 857.8 861.9 8

29、64.2 867.3 875 893.4 916.8 918.1 916.5 经过分析数据,选择适当GARCH模型拟合该序列。 实验步骤: 第一步:编程建立SAS数据集; 第二步:调用Gplot程序对数据绘制时序图。 第三步:从时序图中是否显示有明显的随时间线性增长的趋势,同时又有一定规律的波动?调用AUTOREG程序对数据进行分析,建立延迟因变量回归模型。 第四步:检验残差序列的自相关性和异方差性,如果检验结果显示残差序列具有显著的异方差性,则建立条件异方差模型。 实验七 综合实验 一、实验目的 经过本实验,使学生能够利用SAS统计软件

30、对给出实际问题的非平稳时间序列进行分析,经过确定性因素分解方法提取序列中主要的确定性信息,然后检验残差序列的自相关性,建立合适的Auto-Regressive模型;若存在异方差性,则建立合适的ARCH模型或GARCH模型。 二、实验要求 处理数据,掌握残差序列的建模方法,并根据具体的实验题目要求完成实验报告。 三、实验内容 实验题目:1969年月——1994年9月澳大利亚储备银行2年期有价证券利率数据如下表: 4.99 5 5.03 5.03 5.25 5.26 5.3 5.45 5.49 5.52 5.7 5.68 5.65 5.8 6.5 6.45

31、 6.48 6.45 6.35 6.4 6.43 6.43 6.44 6.45 6.48 6.4 6.35 6.4 6.3 6.32 6.35 6.13 5.7 5.58 5.18 5.18 5.17 5.15 5.21 5.23 5.05 4.65 4.65 4.6 4.67 4.69 4.68 4.62 4.63 4.9 5.44 5.56 6.04 6.06 6.06 8.07 8.07 8.1 8.05 8.06 8.07 8.06 8.11 8.6 10.8 11 11 11 9

32、48 9.18 8.62 8.3 8.47 8.44 8.44 8.46 8.49 8.54 8.54 8.5 8.44 8.49 8.4 8.46 8.5 8.5 8.47 8.47 8.47 8.48 8.48 8.54 8.56 8.39 8.89 9.91 9.89 9.91 9.91 9.9 9.88 9.86 9.86 9.74 9.42 9.27 9.26 8.99 8.83 8.83 8.83 8.82 8.83 8.83 8.79 8.79 8.69 8.66 8.67 8

33、72 8.77 9 9.61 9.7 9.94 9.94 9.94 9.95 9.94 9.96 9.97 10.83 10.75 11.2 11.4 11.54 11.5 11.34 11.5 11.5 11.58 12.42 12.85 13.1 13.12 13.1 13.15 13.1 13.2 14.2 14.75 14.6 14.6 14.45 14.5 14.8 15.85 16.2 16.5 16.4 16.4 16.35 16.1 13.7 13.5 14 12.3 12 14

34、35 14.6 12.5 12.75 13.7 13.45 13.55 12.6 12 11 11.6 12.05 12.35 12.7 12.45 12.55 12.2 12.1 11.15 11.85 12.1 12.5 12.9 12.5 13.2 13.65 13.65 13.5 13.45 13.35 14.45 14.3 15.05 15.55 15.65 14.65 14.15 13.3 12.65 12.7 12.8 14.5 15.1 15.15 14.3 14.25 14.05

35、14.7 15.05 14.05 13.8 13.25 13 12.85 12.6 11.8 13 12.35 11.45 11.35 11.55 10.85 10.9 12.3 11.7 12.05 12.3 12.9 13.05 13.3 13.85 14.65 15.05 15.15 14.85 15.7 15.4 15.1 14.8 15.8 15.8 15 14.4 13.8 14.3 14.15 14.45 14.1 14.05 13.75 13.3 13 12.55 12.25 11.8

36、5 11.5 11.1 11.15 10.7 10.25 10.55 10.25 10.3 9.6 8.4 8.2 7.25 8.35 8.25 8.3 7.4 7.15 6.35 5.65 7.4 7.2 7.05 7.1 6.85 6.5 6.25 5.95 5.65 5.85 5.45 5.3 5.2 5.55 5.15 5.4 5.35 5.1 5.8 6.35 6.5 6.95 8.05 7.85 7.75 8.6 (1)考察该序列的方差齐性。 (2)选择适当的模型拟和该序列的发展。 实验步骤: 第一步:编程建立SAS数据集; 第二步:调用Gplot程序对数据绘制时序图。 第三步:从时序图中是否显示有明显的随时间线性增长的趋势,同时又有一定规律的波动?调用AUTOREG程序对数据进行分析,建立因变量关于时间的回归模型或延迟因变量回归模型。 第四步:检验残差序列的自相关性和异方差性,如果检验结果显示残差序列具有显著自相关性,建立残差自回归模型;如果检验结果显示残差序列具有显著的异方差性,则建立条件异方差模型。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服