ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:533.50KB ,
资源ID:9855357      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9855357.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(棱柱的概念性质.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

棱柱的概念性质.doc

1、高三数学课后针对性巩固资料 课题 棱柱及其性质 学习目标 了解多面体、凸多面体的概念;掌握棱柱、直棱柱、正棱柱的概念及其性质,了解棱柱的表示及其分类;能初步利用棱柱的概念及其性质解决一些简单的问题. 学习重点、难点 棱柱的概念及其性质 学习过程 一、 知识点分析: 1.多面体 (1)多面体的概念:由若干个多边形围成的空间图形叫多面体;每个多边形叫多面体的面,两个面的公共边叫多面体的棱,棱和棱的公共点叫多面体的顶点,连结不在同一面上的两个顶点的线段叫多面体的对角线. (2)凸多面体:把多面体的任一个面展成平面,如果其余的面都位于这个 平面的同一侧,这样的多面体叫凸多面体.

2、如图的多面体则不是凸多面体. (3)凸多面体的分类:多面体至少有四个面,按照它的面数分别叫四面体、五面体、六面体等. 说明:我们学习的多面体都是凸多面体. 2.棱柱 引人:从一些常见的物体(凸多面体),例如三棱镜, 方砖等,它们呈棱柱的形状(如图). (1)棱柱的概念:有两个面互相平行,其余每相邻两个面的交线 互相平行,这样的多面体叫棱柱。两个互相平行的面叫棱柱的底面 (简称底);其余各面叫棱柱的侧面;两侧面的公共边叫棱柱的侧棱; 两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高). (2)棱柱的分类:侧棱不垂直于底面的棱柱叫斜棱柱,侧棱垂直

3、于底面的棱柱叫直棱柱, 底面的是正多边形的直棱柱叫正棱柱。设集合,, ,,则. 棱柱的底面可以是三角形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱…… 3.棱柱的性质 (1)棱柱的侧棱相等,侧面都是平行四边形;直棱柱侧面都是矩形;正棱柱侧面都是全等的矩形; (2)棱柱的两个底面与平行于底面的截面是对应边互相平行的 全等的多边形(图(1)); (3)过棱柱不相邻的两条侧棱的截面都是平行四边形(图(2)). 练习:判断下列命题是否正确: (1)有两个侧面是矩形的棱柱是直棱柱; (2)有一个侧面垂直于底面的棱柱是直棱柱; (3)有一条侧棱垂直于底面

4、两边的棱柱是直棱柱; (4)有两个相邻的侧面是矩形的棱柱是直棱柱; (5)底面是正方形的棱柱是正棱柱; (6)棱柱最多有两个面是矩形; (7)底面是菱形且一个顶点处的三条棱两两互相垂直的棱柱是正棱柱; (8)每个侧面都是全等的矩形的四棱柱是正四棱柱。 答:(1)错(2)错(3)错(4)对(5)错(6)错(7)对(8)错 4.直棱柱、正棱锥的直观图: 例2.画一个底面边长为,高为的正五棱锥的直观图,比例尺为. 分析:画正五棱锥的直观图只需根据斜二侧画法,选择恰当的坐标系画出正五边形的直观图,进而确定出正五棱锥的顶点即可. 例1.斜二测画法画一个底面边长为,

5、高为的正六棱柱的直观图. 分析:要画正六棱柱的直观图,根据斜二测画法的画法规则,只需建立恰当的坐标系,画出下底面的直观图,再根据正六棱柱的对称性确定上底面的六个顶点即可. 4.正多面体: (1)概念:每个面都是有相同边数的正多边形,每个顶点为端点都有相同棱数的凸多面体叫正多面体。例如正方体是正六面体. (2)种数:正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体种(了解即可). (3)直观图如图: (4)种正多面体的展开图如图:(了解) 5、平行六面体、长方体、正方体

6、 底面是平行四边形的四棱柱是平行六面体.侧棱与底面垂直的平行六面体叫直平行六面体,底面是矩形的直平行六面体长方体,棱长都相等的长方体叫正方体. 6、平行六面体、长方体的性质 结论1:平行六面体的对角线交于一点,求证:对角线相交于一点,且在点处互相平分. 结论2:长方体的一条对角线长的平方等于一个顶点上的三条棱长的平方和. 已知:长方体中,是一条对角线,则. 二、典型例题解析: 例1.已知正三棱柱的各棱长都为1,是底面上边的中点, 是侧棱,上的点,且,求证:. 变式训练:如图,直三棱柱,底面中,, ,棱,分别是的中点, (1)求的长;

7、 (2)求异面直线与所成的角; (3)求证:. 例2已知:正四棱柱的底面边长为,侧棱长为, (1)求二面角的大小;(2)求点到平面的距离。 三、针对性练习: 1.若正四棱柱的底面边长为1,与底面成60°角,则 到底面的距离为 ; 2.在正四棱柱中,顶点到对角线和到平面的距离分别为和,则下列命题中正确的是( ) A.若侧棱的长小于底面的边长,则的取值范围为 B.若侧棱的长小于底面的边长,则的取值范围为 C.若侧棱的长大于底面的边长,则的取值范围为 D.若侧棱的长大于底面的

8、边长,则的取值范围为 3.(1)斜棱柱侧棱长为,与底面成的角,则棱柱的高是 . (2)正四棱柱的底面积为,高是,则棱柱的对角线长是 . (3)正三棱柱中,若,则与所成的角为 . 4、长方体中,,求异面直线与所成角的余弦值; 5、(拓展)平行六面体中,, ,求对角面的面积. 四.走向高考 1、在三棱柱中,各棱长相等,侧掕垂直于底面,点是侧面的中心,则与平面所成角的大小是 ; 2、已知正四棱柱中,=,为重点,则异面直线与所形成角的余弦值

9、 为 ; 3、已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为 ; 4、在三棱柱ABC-A1B1C1中,∠ACB=900,∠ACC1=600,∠BCC1=450,侧棱CC1的长为1, 则该三棱柱的高等于 ; 5、平面六面体中,既与共面也与共面的棱的条数为( C ) A.3 B.4 C.5 D.6

10、 6、如图,已知正三棱柱的各条棱长都相等,是侧棱的中点,则异面直线所成的角的大小是 。 E A B C F E1 A1 B1 C1 D1 D F1 O P 7、如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2, AA=2, E、E、F分别是棱AD、AA、AB的中点。 (1) 证明:直线EE//平面FCC; (2) 求二面角B-FC-C的余弦值。 8、如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥A C B A1 B1 C1 D E 平面BCC1 (Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服