ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:353.53KB ,
资源ID:9833177      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9833177.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(2022年AMC12真题预测及答案.docx)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022年AMC12真题预测及答案.docx

1、AMC12 A Problem 1 What is the value of ? Solution Problem 2 For what value of  does ? Solution Problem 3 The remainder can be defined for all real numbers  and  with  bywhere  denotes the greatest integer less than or equal to . What is the value of ? Solution Problem 4 The mean, me

2、dian, and mode of the  data values  are all equal to . What is the value of ? Solution Problem 5 Goldbach's conjecture states that every even integer greater than 2 can be written as the sum of two prime numbers (for example, ). So far, no one has been able to prove that the conjecture is true,

3、 and no one has found a counterexample to show that the conjecture is false. What would a counterexample consist of? Solution Problem 6 A triangular array of  coins has  coin in the first row,  coins in the second row,  coins in the third row, and so on up to  coins in the th row. What is the s

4、um of the digits of  ? Solution Problem 7 Which of these describes the graph of  ? Solution Problem 8 What is the area of the shaded region of the given  rectangle? Solution Problem 9 The five small shaded squares inside this unit square are congruent and have disjoint interiors. Th

5、e midpoint of each side of the middle square coincides with one of the vertices of the other four small squares as shown. The common side length is , where  and  are positive integers. What is  ? Solution Problem 10 Five friends sat in a movie theater in a row containing  seats, numbered  to 

6、 from left to right. (The directions "left" and "right" are from the point of view of the people as they sit in the seats.) During the movie Ada went to the lobby to get some popcorn. When she returned, she found that Bea had moved two seats to the right, Ceci had moved one seat to the left, and Dee

7、 and Edie had switched seats, leaving an end seat for Ada. In which seat had Ada been sitting before she got up? Solution Problem 11 Each of the  students in a certain summer camp can either sing, dance, or act. Some students have more than one talent, but no student has all three talents. Ther

8、e are  students who cannot sing,  students who cannot dance, and  students who cannot act. How many students have two of these talents? Solution Problem 12 In , , , and . Point  lies on , and  bisects . Point  lies on , and bisects . The bisectors intersect at . What is the ratio  : ? Solu

9、tion Problem 13 Let  be a positive multiple of . One red ball and  green balls are arranged in a line in random order. Let  be the probability that at least  of the green balls are on the same side of the red ball. Observe that  and that approaches  as  grows large. What is the sum of the digits o

10、f the least value of  such that ? Solution Problem 14 Each vertex of a cube is to be labeled with an integer from  through , with each integer being used once, in such a way that the sum of the four numbers on the vertices of a face is the same for each face. Arrangements that can be obtained f

11、rom each other through rotations of the cube are considered to be the same. How many different arrangements are possible? Solution Problem 15 Circles with centers  and , having radii  and , respectively, lie on the same side of line  and are tangent to  at  and , respectively, with  between  an

12、d . The circle with center  is externally tangent to each of the other two circles. What is the area of triangle ? Solution Problem 16 The graphs of  and  are plotted on the same set of axes. How many points in the plane with positive -coordinates lie on two or more of the graphs? Solution

13、Problem 17 Let  be a square. Let  and  be the centers, respectively, of equilateral triangles with bases  and each exterior to the square. What is the ratio of the area of square  to the area of square ? Solution Problem 18 For some positive integer  the number  has  positive integer divisors,

14、 including  and the number  How many positive integer divisors does the number  have? Solution Problem 19 Jerry starts at  on the real number line. He tosses a fair coin  times. When he gets heads, he moves  unit in the positive direction; when he gets tails, he moves  unit in the negative dire

15、ction. The probability that he reaches  at some time during this process is  where  and  are relatively prime positive integers. What is  (For example, he succeeds if his sequence of tosses is ) Solution Problem 20 A binary operation  has the properties that  and that  for all nonzero real numb

16、ers  and  (Here the dot  represents the usual multiplication operation.) The solution to the equation  can be written as  where  and  are relatively prime positive integers. What is  Solution Problem 21 A quadrilateral is inscribed in a circle of radius  Three of the sides of this quadrilateral

17、 have length  What is the length of its fourth side? Solution Problem 22 How many ordered triples  of positive integers satisfy  and ? Solution Problem 23 Three numbers in the interval  are chosen independently and at random. What is the probability that the chosen numbers are the side len

18、gths of a triangle with positive area? Solution Problem 24 There is a smallest positive real number  such that there exists a positive real number  such that all the roots of the polynomial  are real. In fact, for this value of  the value of  is unique. What is the value of  Solution Proble

19、m 25 Let  be a positive integer. Bernardo and Silvia take turns writing and erasing numbers on a blackboard as follows: Bernardo starts by writing the smallest perfect square with  digits. Every time Bernardo writes a number, Silvia erases the last digits of it. Bernardo then writes the next perfec

20、t square, Silvia erases the last  digits of it, and this process continues until the last two numbers that remain on the board differ by at least 2. Let  be the smallest positive integer not written on the board. For example, if , then the numbers that Bernardo writes are , and the numbers showing on the board after Silvia erases are  and , and thus . What is the sum of the digits of ? AMC 12A Answer Key 1 B 2 C 3 B 4 D 5 E 6 D 7 D 8 D 9 E 10 B 11 E 12 C 13 A 14 C 15 D 16 D 17 B 18 D 19 B 20 A 21 E 22 A 23 C 24 B 25 E

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服