ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:169.70KB ,
资源ID:9804762      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9804762.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(等边三角形的培优.docx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

等边三角形的培优.docx

1、等边三角形培优讲义 1、等边三角形的性质: (1) 等边三角形的三条边相等,三个角都等于60; (2) 等边三角形每个角的平分线和所对的中线,高线互相垂直; (3) 等边三角形的每条边上的中线、高线以及所对角的平分线相等. 2、等边三角形的判定: (1)三条边相等的三角形是等边三角形; (2)三个角都相等的三角形是等边三角形; (3)有一个角为60的等腰三角形是等边三角形。 例题讲解: 1.下列三角形:①有两个角等于;②有一个角等于的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )

2、 A.①②③ B.①②④ C.①③ D.①②③④ 2.如图,△为等边三角形,且,和相交于点P,则∠( ) A 70 B 60 C 50 D不确定 3.如图,C为线段上一点,在的同侧作等边△和等边△,连接、,若∠40°,则∠的大小是( ) A 60 B 65 C 70 D 80 4、如图2,在线段同侧作两个等边三角形△和△(∠<120°),点P和点M分

3、别是线段和的中点,则△是( ) A.钝角三角形 B.直角三角形 C.等边三角形 D.非等腰三角形 5、如图,在△中,2,3.6,∠60°,将△绕点A按顺时针旋转一定角度得到△,当点B的对应点D恰好落在边上时,则的长为 . 第二题 第三题 6、如图,已知△是等边三角形,点B、C、D、E在同一直线上,且,,则∠. 7、如图,在等边三角形中,6,D是上一点,且3,△绕点A旋转后得到△,则的长度为. 8.将宽为2的长方形纸条折叠成如图所示的形状,那么折痕的长是

4、 9.如图,等边△的三条角平分线相交于点O,∥交于D,∥交于点E,那么这个图形中的等腰三角形共有个。 10.如图,将第一个图(图①)所示的正三角形连接各边中点进行分割,得到第二个图(②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,…,则得到的第七个图中,共有个正三角形. 11、在等边△中,是∠的角平分线,D为上一点,以为一边且在下方坐等边△,连接 (1)求证:△≌△; (2)延长至Q,P为上一点,连接、使5,若8时,求的长。 12、在等边△中的延长线上取一点E,以

5、为边做等边△,使它和△位于直线的同一侧,点M为线段的中点,点N为线段的中点,求证:(1)△为等边三角形;(2)若让△绕C旋转,下列结论会发生变化吗?①;②和交角的度数;③三角形为等边三角形。 13、已知O是等边△内的一点,∠、∠∠的角度之比为6:5:4,求在以、、为边的三角形中,此三边所对的角度之比 14.如图,在等边中,相交于点于点. 求证:. 15、如图,△是等边三角形,△是顶角∠120°的等腰三角形,以D为顶点作一个60°的∠,角的两边分别交、边于M、N两点,连接.试探究、、之间的

6、数量关系,并加以证明. 16、如图,△是等边三角形,△是顶角∠120°的等腰三角形,M是延长线上一点,N是延长线上一点,且∠60°,试探究、、之间的数量关系,并给出证明 17、如图,在平面直角坐标系中,点A的坐标为(﹣2,0),等边三角形经过平移或轴对称或旋转都可以得到△. (1)△沿x轴向右平移得到△,则平移的距离是 个单位长度;△和△关于直线对称,则对称轴是 ;△绕原点O顺时针旋转得到△,则旋转角度可以是 度; (2)连结,交于点E,求∠的度数. 18.如图是由9个等边三角形拼成的六边形,若已知中间

7、的小等边三角形的边长是1,求六边形的周长。 19.如图,过边长为1的等边△的边上一点P,作⊥于E,Q为延长线上一点,当时,连交边于D,求的长 20、如图,△是边长为6的等边三角形,P是边上一动点,由A向C运动(和A、C不重合),Q是延长线上一动点,和点P同时以相同的速度由B向延长线方向运动(Q不和B重合),过P作⊥于E,连接交于D. (1)当∠=30°时,求的长; (2)在运动过程中线段的长是否发生变化?如果不变,求出线段的长;如果变化请说明理由. 21.如图,点E是等边△内一点,且,△外一点D满足,且平分∠

8、求∠的度数. 22.如图, 已知等边三角形中,点D,E,F分别为边,,的中点,M为直线上一动点,△为等边三角形(点M的位置改变时,△也随之整体移动) . (1)如图①,当点M在点B左侧时,请你判断和有怎样的数量关系?点F是否在直线上?都请直接写出结论,不必证明或说明理由; (2)如图②,当点M在上时,其它条件不变,(1)的结论中和的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由; (3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中和的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由

9、. 图① 图② 图③ A · B C D E F · · · 23、(1)操作发现:如图①,D是等边△边上一动点(点D和点B不重合),连接,以为边在上方作等边△,连接.你能发现线段和之间的数量关系吗?并证明你发现的结论. (2)类比猜想:如图②,当动点D运动至等边△边的延长线上时,其他作法和(1)相同,猜想和在(1)中的结论是否仍然成立? (3)深入探究: Ⅰ.如图③,当动点D在等边△边上运动时(点D和点B不重合)连接,以为边在上方、下方分别作等边△和等边△′,连接、′,探究、′和有

10、何数量关系?并证明你探究的结论. Ⅱ.如图④,当动点D在等边△边的延长线上运动时,其他作法和图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论. 24、阅读和理解: 图1是边长分别为a和b(a>b)的两个等边三角形纸片和C′叠放在一起(C和C′重合)的图形. 操作和证明: (1)操作:固定△,将△C′绕点C按顺时针方向旋转30°,连接,,如图2;在图2中,线段和之间具有怎样的大小关系?证明你的结论; (2)操作:若将图1中的△C′,绕点C按顺时针方向任意旋转一个角度α,连

11、接,,如图3;在图3中,线段和之间具有怎样的大小关系?证明你的结论; 猜想和发现: 根据上面的操作过程,请你猜想当α为多少度时,线段的长度最大是多少?当α为多少度时,线段的长度最小是多少? 25.基本问题:已知等边△,。 (1)写出、之间数量关系; (2) 当点M运动到延长线上时,其余条件不变,则(1)的结论是否成立? 变式问题:1。如图等边△和等边△,点P为射线一动点,∠60°,交直线于K。 (1)试探索、之间的数量关系; (2)当点P运动到延长线上时,上题结论是否依然成立?为什么。 26.已知等边△和点P,设点P到△三边、、的距离分别为h1,h2,h3,△的高为h.“若点P在一边上[如图(1)],此时h3=0可得结论:h1+h2+h3=h.”请直接应用上述信息解决下列问题:当点P在△内[如图(2)],以及点P在△外[如图(3)]这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h1,h2,h3和h之间又有怎样的关系,请写出你的猜想,不需要证明. (1) (2) (3)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服