ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:396.54KB ,
资源ID:9803958      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9803958.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(正方形的性质与判定优秀教案.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

正方形的性质与判定优秀教案.doc

1、正方形的性质与判定(1) 主讲:叶良国 课题:正方形的性质与判定(1) 课型:新授课 教学目标: 1.了解正方形概念,理解并掌握正方形的性质与判定方法,通过由一般到特殊的研究方法,分析平行四边形、矩形、菱形、正方形的概念及性质之间的区别与联系.并形成文本信息与图形信息相互转化的能力. 2.在观察、操作、推理、归纳等探索明正方形的性质与判定定理过程中,发展合情推理能力,进一步培养自己的说理习惯与能力 3.培养学生勇于探索、团结协作交流的精神.激发学生学习的积极性与主动性. 教学重难点: 重点:探索正方形的性质与判定。 难点:掌握正方形的性质与判定的应用方

2、法。 关键:把握正方形既是矩形又是菱形这一特性来学习本节内容教学过程 教学过程: 一、 回忆童年,情境引入 想一想:什么是矩形?是菱形? 做一做:大家小时候都做过风车吗?在准备材料的时候我们往往会先折一张正方形的纸片,大家来做一做用一张长方形的纸片折出一个正方形. 设计意图:学生在动手中对正方形产生感性认识,并感知正方形与矩形的关系. 猜一猜:什么样的平行四边形是正方形? 正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形. 看一看:几何画板演示动画 设计意图:从学生的生活实际出发,从制作、动画中,提出问题,创设情境,激发学生强烈的好奇心与求知欲。 我们这

3、节课就来研究正方形.板书课题 【正方形的性质与判定】 二、 实践探究,交流新知 师:其定义包括了两层意:⑴有一组邻边相等的平行四边形 (菱形)⑵有一个角是直角的平行四边形 (矩形),所以说正方形既是菱形又是矩形. 平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流. 生:画图展示 设计意图:锻炼学生文本信息图形化的能力.构建他们之间的逻辑关系;重建学生的认知结构. 师:正方形都具有什么性质呢? 生:由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.所以它应该具备菱形与矩形的所有性质.(多媒体补充显示性质

4、 正方形性质 ①正方形的四个角都是直角,四条边都相等. ②正方形的两条对角线相等并且互相垂直平分. 师:同学们从正方形定义中能尝试口述这两个命题的证明过程吗? 生:学生独立完成,并相互交流 师:正方形有几条对称轴? 生:思考或者画图验证 师:什么样的矩形是正方形?什么样的菱形是正方形?(多媒体演示) 设计意图:通过分析让学生感受到正方形与矩形与菱形、平行四边形的紧密联系,明确正方形的判定。 生:回答正方形判定(多媒体补充显示判定) 正方形的判定 ①有一组邻边相等的矩形是正方形. ②有一个角是直角的菱形是正方形. ③对角线互相垂直的矩形是正方形. ④对角线相等的菱

5、形是正方形. 师:同学们从正方形定义中能尝试口述后两个命题的证明过程吗? 生:独立完成,并相互交流 三、典例学习,巩固新知 例题1:如图,求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形 设计意图:应用正方形边、角、对角线的性质。 例题2:如图:在正方形ABCD中,点E、F、G、H分别是AB,BC,CD,DA的中点,四边形EFGH是正方形吗?为什么? 分析:要证明四边形EFGH是正方形可以先证四边形EFGH是菱形然后再证明有一个角是直角。或先证四边形EFGH是矩形然后再证明有一组邻边相等。 设计意图:应用正方形两种判定方法(矩形法、菱形法)。 .四、巩固练习 1

6、已知四边形ABCD是平行四边形,对角线AC、BD相交于点O。 ⑴若AB=BC,则四边形ABCD是( ) ⑵若AC=BD,则四边形ABCD是( ) ⑶若OA=OB,则四边形ABCD是( ) ⑷若AB=BC,且AC=BD,则四边形ABCD是( ) 设计意图:巩固矩形、菱形、正方形的关系 2、如图,在正方形ABCD中,点F为对角线AC上一点, 连接BF,DF.你能找出图中的全等三角形吗?选择其中 一对进行证明. 设计意图:巩固正方形轴对称性质 五、课堂小结,内敛提升 师:通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家. 生:畅谈自己的收获! 设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识. 六、作业布置,落实目标 1、基础作业:课本习题P61 12、13题; 2、选做作业:如图,在正方形ABCD中,BD是对角线,DE平分∠BDC试猜想CD、CE、BD 之间的关系,并证明你的猜想。 第 5 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服