ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:951.01KB ,
资源ID:9779818      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9779818.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(Parzen窗估计及KN近邻估计实验报告.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

Parzen窗估计及KN近邻估计实验报告.doc

1、 装 订 线 模式识别实验报告 题目:Parzen窗估计与KN近邻估计 学 院 计算机科学与技术 专 业 xxxxxxxxxxxxxxxx 学 号 xxxxxxxxxxxx 姓 名 xxxx 指导教师 xxxx 20xx年xx月xx日 Parzen窗估计

2、与KN近邻估计 一、实验目的  本实验的目的是学习Parzen窗估计和k最近邻估计方法。在之前的模式识别研究中,我们假设概率密度函数的参数形式已知,即判别函数J(.)的参数是已知的。本节使用非参数化的方法来处理任意形式的概率分布而不必事先考虑概率密度的参数形式。在模式识别中有躲在令人感兴趣的非参数化方法,Parzen窗估计和k最近邻估计就是两种经典的估计法。  二、实验原理  1.非参数化概率密度的估计 对于未知概率密度函数的估计方法,其核心思想是:一个向量x落在区域R中的概率可表示为: 其中,P是概率密度函数p(x)的平滑版本,因此可以通过计算P来估计概率密度函数p(x),假

3、设n个样本x1,x2,…,xn,是根据概率密度函数p(x)独立同分布的抽取得到,这样,有k个样本落在区域R中的概率服从以下分布: 其中k的期望值为: k的分布在均值附近有着非常显著的波峰,因此若样本个数n足够大时,使用k/n作为概率P的一个估计将非常准确。假设p(x)是连续的,且区域R足够小,则有: 如下图所示,以上公式产生一个特定值的相对概率,当n趋近于无穷大时,曲线的形状逼近一个δ函数,该函数即是真实的概率。公式中的V是区域R所包含的体积。综上所述,可以得到关于概率密度函数p(x)的估计为: 在实际中,为了估计x处的概率密度函数,需要构造包含点x的区域R1,R2

4、…,Rn。第一个区域使用1个样本,第二个区域使用2个样本,以此类推。记Vn为Rn的体积。kn为落在区间Rn中的样本个数,而pn (x)表示为对p(x)的第n次估计: 欲满足pn(x)收敛:pn(x)→p(x),需要满足以下三个条件: 有两种经常采用的获得这种区域序列的途径,如下图所示。其中“Parzen窗方法”就是根据某一个确定的体积函数, 比如Vn=1/√n来逐渐收缩一个给定的初始区间。这就要求随机变量kn和kn/n能够保证pn (x)能收敛到p(x)。第二种“k-近邻法”则是先确定kn为n的某个函数,如kn=√n。这样,体积需要逐渐生长,直到最后能包含进x的kn个相邻 点。

5、 2.Parzen窗估计法 已知测试样本数据x1,x2,…,xn,在不利用有关数据分布的先验知识,对数据分布不附加任何假定的前提下,假设R是以x为中心的超立方体,h为这个超立方体的边长,对于二维情况,方形中有面积V=h^2,在三维情况中立方体体积V=h^3,如下图所示。 根据以下公式,表示x是否落入超立方体区域中: 估计它的概率分布: 其中n为样本数量,h为选择的窗的长度,φ(.)为核函数,通常采用矩形窗和高斯窗。 3.k最近邻估计 在Parzen算法中,窗函数的选择往往是个需要权衡的问题,k-最近邻算法提供了一种解决方法,是一种非常经典的 非参数估计法。基本思路是

6、已知训练样本数据x1,x2,…,xn而估计p(x),以点x为中心,不断扩大体积Vn,直到区域内包含k个样本点为止,其中 k是关于n的某一个特定函数,这些样本被称为点x的k个最近邻点。 当涉及到邻点时,通常需要计算观测点间的距离或其他的相似性度量,这些度量能够根据自变量得出。这里我们选用最常见的距离度量方法:欧几里德距离。 最简单的情况是当k=1的情况,这时我们发现观测点就是最近的(最近邻)。一个显著的事实是:这是简单的、直观的、有力的分类方法,尤其当我们的训练集中观测点的数目n很大的时候。可以证明,k最近邻估计的误分概率不高于当知道每个类的精确概率密度函数时误分概率的两倍。 三、实验基

7、本步骤 第一部分,对表格中的数据,进行Parzen 窗估计和设计分类器,本实验的窗函数为一个球形的高斯函数,如下: 1) 编写程序,使用Parzen 窗估计方法对一个任意的测试样本点x 进行分类。对分类器的训练则使用表格 3中的三维数据。同时,令h =1,分类样本点为(0.5,1.0,0.0),(0.31,1.51,-0.50),(-0.3,0.44,-0.1)进行实验。 2) 可以改变h的值,不同的h将导致不同的概率密度曲线,如下图所示。 h=0.1时: h=0.5时: h=1时: 第二部分的实验目的是学习和掌握非参数估计:k-近邻概率密度估计方法。对前面表

8、格中的数据进行k-近邻概率密度估计方法和设计分类器。 编写程序,对表格中的3个类别的三维特征,使用k-近邻概率密度估计方法。并且对下列点处的概率密度进行估计:(-0.41,0.82,0.88),(0.14,0.72, 4.1) ,(-0.81,0.61,-0.38)。 四、实验代码如下: % Parzen窗算法 % w:c类训练样本 % x:测试样本 % h:参数 % 输出p:测试样本x落在每个类的概率 function p = Parzen(w,x,h) [xt,yt,zt] = size(w); p = zeros(1,zt); for i = 1

9、zt hn = h; for j = 1:xt hn = hn / sqrt(j); p(i) = p(i) + exp(-(x - w(j,:,i))*(x - w(j,:,i))'/ (2 * power(hn,2))) / (hn * sqrt(2*3.14)); end p(i) = p(i) / xt; end % k-最近邻算法 % w:c类训练样本 % x:测试样本 % k:参数 function p = kNearestNeighbor(w,k,x) % w = [w(:,:,1

10、);w(:,:,2);w(:,:,3)]; [xt,yt,zt] = size(w); wt = [];%zeros(xt*zt, yt); if nargin==2 p = zeros(1,zt); for i = 1:xt for j = 1:xt dist(j,i) = norm(wt(i,:) - wt(j,:)); end t(:,i) = sort(dist(:,i)); m(:,i) = find(dist(:,i) <= t(k+1,i)); % 找到k个最近

11、邻的编号 end end if nargin==3 for q = 1:zt wt = [wt; w(:,:,q)]; [xt,yt] = size(wt); end for i = 1:xt dist(i) = norm(x - wt(i,:)); end t = sort(dist); % 欧氏距离排序 [a,b] = size(t); m = find(dist <= t(k+1)); % 找到k个最近邻的编号

12、 num1 = length(find(m>0 & m<11)); num2 = length(find(m>10 & m<21)); num3 = length(find(m>20 & m<31)); if yt == 3 plot3(w(:,1,1),w(:,2,1),w(:,3,1), 'r.'); hold on; grid on; plot3(w(:,1,2),w(:,2,2),w(:,3,2), 'g.'); plot3(w(:,1,3),

13、w(:,2,3),w(:,3,3), 'b.'); if (num1 > num2) || (num1 > num3) plot3(x(1,1),x(1,2),x(1,3), 'ro'); disp(['点:[',num2str(x),']属于第一类']); elseif (num2 > num1) || (num2 > num3) plot3(x(1,1),x(1,2),x(1,3), 'go'); disp(['点:[',num2str(x),']属于第二类']); elseif (num3 > num1) || (num3 > num2)

14、 plot3(x(1,1),x(1,2),x(1,3), 'bo'); disp(['点:[',num2str(x),']属于第三类']); else disp('无法分类'); end end if yt == 2 plot(w(:,1,1),w(:,2,1), 'r.'); hold on; grid on; plot(w(:,1,2),w(:,2,2), 'g.'); plot(w(:,1,3),w(:,2,3), 'b.'); if (num1 >

15、num2) || (num1 > num3) plot(x(1,1),x(1,2), 'ro'); disp(['点:[',num2str(x),']属于第一类']); elseif (num2 > num1) || (num2 > num3) plot(x(1,1),x(1,2), 'go'); disp(['点:[',num2str(x),']属于第二类']); elseif (num3 > num1) || (num3 > num2) plot(x(1,1),x(1,2), 'bo'); disp(['点:[',num2st

16、r(x),']属于第三类']); else disp('无法分类'); end end end title('k-最近邻分类器'); legend('第一类数据',... '第二类数据',... '第三类数据',... '测试样本点'); clear; close all; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Parzen窗估计和k最近邻估计 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w1(:,:,1) = [ 0.28

17、 1.31 -6.2; 0.07 0.58 -0.78; 1.54 2.01 -1.63; -0.44 1.18 -4.32; -0.81 0.21 5.73; 1.52 3.16 2.77; 2.20 2.42 -0.19; 0.91 1.94 6.21; 0.65 1.93 4.38; -0.26 0.

18、82 -0.96]; w1(:,:,2) = [0.011 1.03 -0.21; 1.27 1.28 0.08; 0.13 3.12 0.16; -0.21 1.23 -0.11; -2.18 1.39 -0.19; 0.34 1.96 -0.16; -1.38 0.94 0.45; -0.12 0.82 0.17; -1.44 2

19、31 0.14; 0.26 1.94 0.08]; w1(:,:,3) = [ 1.36 2.17 0.14; 1.41 1.45 -0.38; 1.22 0.99 0.69; 2.46 2.19 1.31; 0.68 0.79 0.87; 2.51 3.22 1.35; 0.60 2.44 0.92; 0.64 0.13 0

20、97; 0.85 0.58 0.99; 0.66 0.51 0.88]; x(1,:) = [0.5 1 0]; x(2,:) = [0.31 1.51 -0.5]; x(3,:) = [-0.3 0.44 -0.1]; % 验证h的二维数据 w2(:,:,1) = [ 0.28 1.31 ; 0.07 0.58 ; 1.54 2.01 ; -0.44 1.18 ; -0.81 0.21

21、 ; 1.52 3.16 ; 2.20 2.42 ; 0.91 1.94 ; 0.65 1.93 ; -0.26 0.82 ]; w2(:,:,2) = [0.011 1.03 ; 1.27 1.28 ; 0.13 3.12 ; -0.21 1.23 ; -2.18 1.39 ;

22、 0.34 1.96 ; -1.38 0.94 ; -0.12 0.82 ; -1.44 2.31 ; 0.26 1.94 ]; w2(:,:,3) = [1.36 2.17 ; 1.41 1.45 ; 1.22 0.99 ; 2.46 2.19 ; 0.68 0.79 ; 2.51 3.22 ;

23、 0.60 2.44 ; 0.64 0.13 ; 0.85 0.58 ; 0.66 0.51 ]; y(1,:) = [0.5 1]; y(2,:) = [0.31 1.51]; y(3,:) = [-0.3 0.44]; h = .1; % 重要参数 p = Parzen(w1,x(1,:),h); num = find(p == max(p)); disp(['点:[',num2str(x(1,:)),']落在三个类别的概率分别为:',num2str(p)]);

24、 disp(['点:[',num2str(x(1,:)),']落在第',num2str(num),'类']); % 给定三类二维样本,画出二维正态概率密度曲面图验证h的作用 num =1; % 第num类的二维正态概率密度曲面图,取值为1,2,3 draw(w2,h,num); str1='当h=';str2=num2str(h);str3='时的二维正态概率密度曲面'; SC = [str1,str2,str3]; title(SC); % k近邻算法设计的分类器 % x1和y1为测试样本 x1 = [-0.41,0.82,0.88]; x2 = [0.14,0.72, 4.1]; x3 = [-0.81,0.61,-0.38]; y(1,:) = [0.5 1]; y(2,:) = [0.31 1.51]; y(3,:) = [-0.3 0.44]; w = w1; %w = w1(:,1,3); k = 5; kNearestNeighbor(w,k,x1); kNearestNeighbor(w,k,x2); kNearestNeighbor(w,k,x3);

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服