ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:178.88KB ,
资源ID:9775457      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9775457.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高中数学解题技巧归纳.docx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学解题技巧归纳.docx

1、 高中数学破题技巧 主讲人: 徐德桦(绍兴一中) 一、列举法 【方法阐释】列举法就是通过枚举集合中所有的元素,然后根据集合的基本运算进行求解的方法。这种方法适用于数集的有关运算以及集合类型的新定义运算问题,也适用于一些集合元素比较少而且类型比较单一类型的题目,如排列组合等等。 【典型实例】 设P,Q为两个非空实数集合,定义集合P*Q={z|z=a/b,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P*Q中元素的个数是( ) A.2 B.

2、3 C.4 D.5 二、定义法 【方法阐释】利用定义判断充分条件和必要条件的方法就是最基本的、最常规的方法(回忆一下这些条件的判断方法),一般拿到陌生的题目或者一些新定义类型的题目都需要从定义和性质出发寻找突破口。 【典型实例】 “(m-1)(a-1)>0”是“logam>0”的( )(logam 意思就是以a为底m的对数) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 三、特殊函数法 【方法阐释】对于一些小题目(譬如,选择题和填空题)一般不需要详细的过程和步骤

3、只要有一种预感和能说服自己的理由可以尝试地使用一些特定的函数或者说特殊值。给定函数f(x)具备的一些性质来研究它另外的一些性质。对于能看出来是定值的题目一般也宜用特殊值法。 【典型实例】 定义在R上的函数f(x)关于(2,0)对称,且在[2,+无穷)上单调递增,如果x1+x2>4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是( ) A.f(x1)+f(x2)>0 B.f(x1)+f(x2)=0 C.f(x1)+f(x2)<0 D.无法判断 四、换元法 【方法阐释】这是一种高中阶段最常用的数学解题方法,贯穿于高中所有的

4、阶段。解题过程就是将复杂的抽象的难以分辨和讨论的问题转化为简单具体直接而且熟悉的问题。例如,求函数y = x^4+2x^2-8的最值,就可以t=x^2(t>=0),这里t的范围需要特别注意。 【典型实例】 若2=

5、相反”这一性质求解参数的取值范围。 【典型实例】 函数f(x)为分段函数,在x>0,为2x-6+lnx,在x<=0,为x^2-2 的零点个数是_________. 六、 构造函数法 【方法阐释】导数是解决函数问题的一个有力的工具,但是有些与函数有关的问题无法直接用导数直接来处理,而需要通过构造新的函数才能解决问题。特定地,当给定关于导数的不等关系时,常常需要构造对应的函数。 【典型实例】 函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f’(x)>2,则f(x)>2x+4的解集( ) A. (-1,1) B.(-1,+无穷) C.(-无穷,-1)

6、 D.(-无穷,+无穷) 已知偶函数f(x)在区间[0,+无穷)上满足f’(x)>0,则满足f(x^2-2x)

7、2)倍角化为和差角,2x=(x+y)+(x-y),2y=(x+y)-(x-y),(3.)未知和差角化为已知和差角,如:2x+y=(x+y)+x,2x-y=(x-y)+x... 【典型实例】 已知tan(x+y)=2/5,tan(y-π/4)=1/4,则tan(π/4+x)的值为_______. 已知锐角A,B满足2tanA = tan(A+B),则tanB 的最大值() A. 二根号二 B. 根号二 C. 二分之根号二 D. 四分之根号二 八、 变角互化法 【方法阐释】这一类型的题目一般有一个特点就是比较烦,计算量可能比较大,但是只要有想法有方法还是很容易拿

8、全分的,一般出现在大题目第一题。常解决的方法就是利用正弦和余弦定理将已知条件转化为边边的关系或者通过因式分解、配方等得出相应的关系 【典型实例】 在三角形ABC中,设a,b,c分别是角A,B,C的对边,且直线bx+ycosA+cosB=0与ax+ycosB+cosA=0平行,则三角形ABC一定是( ) A. 锐角三角形 B. 等腰三角形 C. 直角三角形 D. 等腰或直角三角形 在三角形ABC中,tanA+tanB+根号三 = 根号三tanAtanB,且 sinAcosA=根号三/4,则此三角形为 ( ) A. 锐角三角形 B. 直角三角形 C. 等边三角形

9、D. 钝角三角形 九、 特殊值法 【方法阐释】由于选择题仅要求结论正确,以至于如何获得这个结论并不重要,虽然特殊代替不了一般情况,但是就像马克思主义哲学里面讲的特殊反应普遍性,所以在特定情况下,特殊值法是一种常用而且高效的一种解决小题的方法。 【典型实例】 对于任意向量a,b,c,下列命题中正确的是( ) A、 |ab| = |a||b| B、 |a+b| = |a| + |b| C、 (ab)c = a(bc) D、 aa=|a|^2 若a,b,c均为单位向量,且(a+2b)^2 = 5,则|a+b-c|的最小值为 ( ) A.根号二-1 B.1

10、 C.根号二+1 D..根号二 十、 数形结合法 【方法阐述】这时高中阶段考察最为频繁的一种数学思想方法,可以说几乎每一张数学试卷都会重点考察这种方法,我们要养成一种习惯就是拿到一道题目要尽量的将其转化为图形模型,因为只有图形是最为客观最容易观察的 【典型实例】 若直线y= kx+1 与圆x^2+y^2=1相交于P,Q两点,且∠POQ = 120°(其中O为原点),则k值为 ( ) A. ±根号 B. 根号三 C. ±根号二 D. 根号二 “a=3”是“直线ax+2y+2a=0和直线3x+(a-1)y-a+7=0”的( ) A. 充分不必要条件 B.

11、必要不充分条件 C. 冲要条件 D. 既不充分也不必要 十一、 判别式法 【方法阐释】判别式法就是将直线与曲线方程联立,得到一个一元二次方程,通过判别式建立所含参数的不等式 【典型实例】 直线y=x+2,与椭圆x^2/m+y^2/3=1,有两个公共点,则m的取值范围是( ) A. m>1 B. m>1且m≠3 C. m>3 D. m>0且m≠3 已知双曲线x^2/14-y^2/2=1,的左右焦点为F1,F2,P为双曲线左支上一点,M为双曲线渐近线上一地(渐近线的斜率大于0),则|PF2|+|PM|的最小值为___________ 十二、定义法

12、 【方法阐释】定义方法就是直接利用我们学习的知识来做题目,一般我们遇到陌生的题目我们就会先采用这种方法 【典型实例】 已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2、a4的等差中项,则数列{an}的通项公式为( ) A.2n B.2^n C.2^(n-1) D.2n+1 在等比数列{an}中,若a4,a8是方程x^2-3x+2=0的两个根,则a6的值为( ) A.正负根号二 B.负根号二 C.根号二 D.正负二 十三、错位相减法 【方法阐释】这是数列里面最常用的一种手法,也是最基本的方

13、法。必须熟练掌握,仔细运算 【典型实例】 已知等比数列{an}的首项为a1=1/4,公比q=1/4,设bn+2=3log1/4an (n∈N*),数列{cn}满足cn=an*bn.则数列{cn}的前n项和Sn=___. 十四、分类讨论法 【方法阐释】分类讨论也是高中数学最基本的数学思想方法,我们运用分类讨论的方法,必须要抓住要讨论的源头在哪里,抓住这个源头再来分情况讨论那么思路就会顺势而来 【典型实例】 不等式|x-2-|-|x-1|>0的解集( ) A.(-无穷,3/2) B.(-无穷,-3/2) C.(3/2,+无穷) D.(-3/

14、2,+无穷) 设二次函数f(x)=ax^2-4x+c(x∈R)的值域为[0,+无穷),则1/(c+1) +9/(a+9)的最大值( ) A.6/5 B.根号五/4 C.4/3 D.2 十五、等价转化法 【方法阐释】等价转化法就是把所求的问题转化为已有的知识法范围内的可解问题的一种极为重要的思想方法 【典型实例】 一元二次方程x^2+ax+2b=0有两个根,一个根在(0,1)内,一个在区间(1,2)内,则点(a,b)对应的区域面积为( ) A.1/2 B.1 C.2 D.3/2 实数x,y满足y>=|x-1|和y<=1,则

15、不等式所组成的图形的面积为( ) A.4 B.2 C.1/2 D.1 十六、 割补法 【方法阐释】割补法常用于求解不规则几何体的体积或者用于分析,通过割或者补对几何体的体积之和或差来表示 【典型实例】 十七、 向量法 【方法阐释】一般用在空间几何的题目上面,在建立空间直角坐标系后,就可以用坐标表示相关的向量,这样,线面关系的逻辑推理就转化为了相应的直线方向向量和平面的法向量之间的坐标代数运算,用代数运算代替了空间线面关系的逻辑推理,使得证明和运算过程化和程式化 【典型实例】 十八、 正难则反法 【方法阐释】求事件A的概率,如果事件A包含的基本事件比较多或者比较复杂,其反面比较简单,这是可以先求出反面,再用1-反面就可以得到解,这就是正难则反思想的体现 【典型实例】 有四位同学,没人买一张体育彩票,则至少有两位同学所买的彩票的末位数字相同的概率为( ) A.63/125 B.62/125 C.60/125 D.65/125

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服