ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:2.85MB ,
资源ID:9710183      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9710183.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(小学奥数几何五大模型燕尾模型.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

小学奥数几何五大模型燕尾模型.doc

1、 燕尾定理 例题精讲 燕尾定理: 在三角形中,,,相交于同一点, 那么, 上述定理给出了一个新的转化面积比与线段比的手段,因为和的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径. 通过一道例题 证明燕尾定理: 如右图,是上任意一点,请你说明: 【解析】 三角形与三角形同高,分别以、为底,所以有; 三角形与三角形同高,; 三角形与三角形同高,,所以;

2、综上可得, . 【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形的面积是,是的中点,点在上,且,与交于点.则四边形的面积等于 . 【解析】 方法一:连接, 根据燕尾定理,,, 设份,则份,份,份,如图所标 所以 方法二:连接,由题目条件可得到, ,所以, , 而.所以则四边形的面积等于. 【巩固】如图,已知,,三角形的面积是,求阴影部分面积. 【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我

3、们需要对它进行改造,那么我们需要连一条辅助线, (法一)连接,因为,,三角形的面积是30, 所以,. 根据燕尾定理,,, 所以,, 所以阴影部分面积是. (法二)连接,由题目条件可得到, ,所以, , 而.所以阴影部分的面积为. 【巩固】如图,三角形的面积是, 在上,点在上,且,,与 交于点.则四边形的面积等于 . 【解析】 连接, 根据燕尾定理,,, 设份,则份,份,份,份,所以 【巩固】如图,已知,,与相交于点,则被分成的部分面积各占 面积的几分之几? 【解析】 连接,设份,则其他部

4、分的面积如图所示,所以份,所以四部分按从小到大各占面积的 【巩固】(年香港圣公会数学竞赛)如图所示,在中,,,与相交于点,若的面积为,则的面积等于 . 【解析】 方法一:连接. 由于,,所以,. 由蝴蝶定理知,, 所以. 方法二:连接设份,根据燕尾定理标出其他部分面积, 所以 【巩固】如图,三角形的面积是,,,与相交于点,请写出这部分的面积各是多少? 【解析】 连接,设份,则其他几部分面积可以有燕尾定理标出如图所示,所以,,, 【巩固】如图,在上,在上,且,,与交于点.四边形的面积等于,则三角形的面积 .

5、 【解析】 连接,根据燕尾定理,,, 设份,则份,份,份, 份,份,如图所标,所以份,份 所以 【巩固】三角形中,是直角,已知,,,,那么三角形(阴影部分)的面积为多少? 【解析】 连接. 的面积为 根据燕尾定理,; 同理 设面积为1份,则的面积也是1份,所以的面积是份,而的面积就是份,也是4份,这样的面积为份,所以的面积为. 【巩固】如图,长方形的面积是平方厘米,,是的中点.阴影部分的面积是多少平方厘米? 【解析】 设份,则根据燕尾定理其他面积如图所示平方厘米. 【例 2】 如图所示,在四边形中,,,四边形的面积是,那么平行四边形的面积为____

6、.        【解析】 连接,根据燕尾定理,,设,则其他图形面积,如图所标,所以. 【例 3】 是边长为厘米的正方形,、分别是、边的中点,与交于,则四边形的面积是_________平方厘米. 【解析】 连接、,设份,根据燕尾定理得份,份,则份,份,所以 【例 4】 如图,正方形的面积是平方厘米,是的中点,是的中点,四边形 的面积是_____平方厘米. 【解析】 连接,根据沙漏模型得,设份,根据燕尾定理份,份,因此份,,所以(平方厘米). 【例 5】 如图所示,在中,,是的中点,那么 . 【解析】 连接. 由

7、于,,所以, 根据燕尾定理,. 【巩固】在中,, ,求? 【解析】 连接. 因为,根据燕尾定理,,即; 又,所以.则, 所以. 【巩固】在中,, ,求? 【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接. 连接. 因为,根据燕尾定理,,即; 又,所以.则, 所以. 【例 6】 (2009年清华附中入学测试题)如图,四边形是矩形,、

8、分别是、上的点,且,,与相交于,若矩形的面积为,则与的面积之和为 . 【解析】 (法1)如图,过做的平行线交于,则, 所以,,即, 所以. 且,故,则. 所以两三角形面积之和为. (法2)如上右图,连接、. 根据燕尾定理,,, 而, 所以,,,, 则,, 所以两个三角形的面积之和为15. 【例 7】 如右图,三角形中,,,求. 【解析】 根据燕尾定理得 (都有的面积要统一,所以找最小公倍数) 所以 【点评】本题关键是把的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜

9、如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量! 【巩固】如右图,三角形中,,,求. 【解析】 根据燕尾定理得 (都有的面积要统一,所以找最小公倍数) 所以 【巩固】如图,,,则 【解析】 根据燕尾定理有,,所以 【巩固】如右图,三角形中,,,求. 【解析】 根据燕尾定理得 (都有的面积要统一,所以找最小公倍数) 所以 【点评】本题关键是把的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本

10、质,我们就能达到解奥数题四两拨千斤的巨大力量! 【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形中,,且三角形的面积是,则三角形的面积为______,三角形的面积为________,三角形的面积为______. 【分析】 连接、、. 由于,所以,故; 根据燕尾定理,,,所以 ,则,; 那么; 同样分析可得,则,,所以,同样分析可得, 所以,. 【巩固】 如右图,三角形中,,且三角形的面积是,求三角形的面积. 【解析】 连接BG,份 根据燕尾定理,, 得(份),(份),则(份),因此, 同理连接AI、CH得,, 所以 三

11、角形GHI的面积是1,所以三角形ABC的面积是19 【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,中,,,那么的面积是阴影三角形面积的 倍. 【分析】 如图,连接. 根据燕尾定理,,, 所以,, 那么,. 同理可知和的面积也都等于面积的,所以阴影三角形的面积等于面积的,所以的面积是阴影三角形面积的7倍. 【巩固】如图在中,,求的值. 【解析】 连接BG,设1份,根据燕尾定理,,得(份),(份),则(份),因此,同理连接AI、CH得,, 所以 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图

12、形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线. 【巩固】如图在中,,求的值. 【解析】 连接BG,设1份,根据燕尾定理,,得(份),(份),则(份),因此,同理连接AI、CH得,, 所以 【巩固】如右图,三角形中,,且三角形的面积是,求角形 的面积. 【解析】 连接BG,12份 根据燕尾定理,, 得(份),(份),则(份),因此, 同理连接AI、CH得,, 所以 三角形ABC的面积是,所以三角形GHI的面积是 【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图

13、所示, 三个三角形的面积 分别是,,,则阴影四边形的面积是多少? 【解析】 方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算. 再看这道题,出现两个面积相等且共底的三角形. 设三角形为,和交于,则,再连结. 所以三角形的面积为3.设三角形的面积为, 则,所以,四边形的面积为. 方法二:设,根据燕尾定理,得到,再根据向右下飞的燕子,有,解得四边形的面积为 【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是 . 【解析】 方法一:整个题目读完,我们没有发现任何与边长相关的条件,也

14、没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系: ,解得. 方法二:回顾下燕尾定理,有,解得. 【例 10】 如图,三角形被分成个三角形,已知其中个三角形的面积,问三角形的面积是多少? 【解析】 设,由题意知根据燕尾定理,得 ,所以, 再根据,列方程解得 ,所以 所以三角形ABC的面积是 【例 11】 三角形ABC的面积为15平方厘米,D为AB中点,E为AC中点,F为BC中点,求阴影部分的面积. 【解析】 令BE与CD的交点为M,CD与EF的交点为N,连接AM,BN. 在中,根据

15、燕尾定理,,, 所以 由于S,所以 在中,根据燕尾定理, 设(份),则(份),(份),(份), 所以,,因为,F为BC中点, 所以,, 所以(平方厘米) 【例 12】 如右图,中,是的中点,、、是边上的四等分点,与交于,与交于,已知的面积比四边形的面积大平方厘米,则的面积是多少平方厘米? 【解析】 连接、. 根据燕尾定理,,,所以; 再根据燕尾定理,,所以,所以,那么,所以. 根据题意,有,可得(平方厘米) 【巩固】(2007年四中分班考试题)如图,中,点是边的中点,点、是边的三等分点,若的面积为1,那么四边形的面积是_________.

16、 【解析】 由于点是边的中点,点、是边的三等分点,如果能求出、、三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形的面积. 连接、. 根据燕尾定理,,而,所以,那么,即. 那么,. 另解:得出后,可得, 则. 【例 13】 如图,三角形的面积是,,,三角形被分成部分,请写出这部分的面积各是多少? 【解析】 设BG与AD交于点P,BG与AE交于点Q,BF与AD交于点M,BF与AE交于点N.连接CP,CQ,CM,CN. 根据燕尾定理,,,设(份),则(份),所以 同理可得,,,而,所以,. 同理,,所以,,, 【巩固】如图,的面积为1,点、是

17、边的三等分点,点、是边的三等分点,那么四边形的面积是多少? 【解析】 连接、、. 根据燕尾定理,,, 所以,那么,. 类似分析可得. 又,,可得. 那么,. 根据对称性,可知四边形的面积也为,那么四边形周围的图形的面积之和为,所以四边形的面积为. 【例 14】 如右图,面积为的中,,,,求阴影部分面积. 【解析】 设交于,交于,交于.连接, . ∵,, ∵,, ∴ ∵ ∴, ∵ ∴ . 同理 ∴ ,

18、 ∵ , ∴ , 又∵, ∴, 同理 ,∵,∴, ∴. 同理 个小阴影三角形的面积均为. 阴影部分面积. 【例 15】 如图,面积为l的三角形ABC中,D、E、F、G、H、I分别是AB、BC、CA 的三等分点,求阴影部分面积. 【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧! 令BI与CD的交点为M,AF与CD的交点为N,BI与AF的交点为P,BI与CE的交点为Q,连接AM、BN、CP ⑴求:在中,根据燕尾定理, 设(份),则(

19、份),(份),(份), 所以,所以,, 所以, 同理可得另外两个顶点的四边形面积也分别是面积的 ⑵求:在中,根据燕尾定理, 所以,同理 在中,根据燕尾定理, 所以 所以 同理另外两个五边形面积是面积的 所以 【例 16】 如图,面积为l的三角形ABC中,D、E、F、G、H、I分别是AB、BC、CA 的三等分点,求中心六边形面积. 【解析】 设深黑色六个三角形的顶点分别为N、R、P、S、M、Q,连接CR 在中根据燕尾定理,, 所以,同理, 所以 同理 根据容斥原理,和上题结果 【例 17】 (年数学解题能力大赛六年级初试试题)正六边形,,,,,

20、的面积是平方厘米,,,,,,分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米. 【解析】 (方法一)因为空白的面积等于面积的倍,所以关键求的面积,根据燕尾定理可得,但在用燕尾定理时,需要知道的长度比,连接,,过作的平行线,交于,根据沙漏模型得,再根据金字塔模型得,因此,在中,设份,则份,份,所以, 因此(平方厘米) (方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成个大小形状相同的梯形,其中阴影有个梯形,所以阴影面积为(平方厘米) 【例 18】 已知四边形,为正方形,,与是两个正方形的边长,求 【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解 连接EO、AF, 根据燕尾定理:, 所以 ,作OM⊥AE、ON⊥EF, ∵AEEF ∴ ∴ ∴

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服