ImageVerifierCode 换一换
格式:DOCX , 页数:18 ,大小:234.16KB ,
资源ID:960459      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/960459.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(基于组态王的双储液罐单水位PID控制系统设计课程设计报告.docx)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于组态王的双储液罐单水位PID控制系统设计课程设计报告.docx

1、专业方向课程设计报告题目:基于组态王的双储液罐单水位PID控制系统设计摘 要本文主要实现基于组态王的双储液罐单水位PID控制系统,通过对实验系统结构的研究,运用所学的MATLAB知识建立了单容水箱实验系统的数学模型,并对系统的参数进行了辨识,用工业控制软件组态王6.5,使其具有报警画面,历史曲线,实时曲线,报表画面。关键词:双储液罐,PID控制系统,单容水箱,组态王6.5 ABSTRACT This paper based on the configuration of the double tank water level single PID control system ,make wa

2、ter tank water level, water tank temperature detection, and water tank level control at a given value.Through the study on the structure of the experimental system, use learned knowledge of MATLAB to establish a single volume tank experimental system mathematical model, and the parameters of the sys

3、tem are identified,use industrial control software kingview 6.5, enables it to have the alarm screen, historical curve, real-time curve, statements frame.KEY WORDS: Double liquid storage tank,PID control system,single volume tank,Configuration king 6.5 目录摘要ABSTRACT第1章 绪论1第2章 系统总体方案22.1控制系统构成22.1控制系统

4、过程2第3章 水箱建模及参数整定43.1 水箱的建模过程43.2 水箱液位的PID整定5第4章 组态王6.5简介与操作界面的设计74.1组态软件介绍74.2基于组态王6.5的液位控制系统上位机部分设计7 4.2.1上位机主控画面7 4.2.2上位机功能画面9第5章 结论与展望10致 谢11参 考 文 献12第1章 绪论 随着现代科学技术的迅猛发展,工业生产的规模越来越大,结构也越来越复杂,从而使控制对象、控制器以及控制任务和目的日益复杂,而对系统的精度、响应速度和稳定性的要求却越来越高。但是,当前的学术理论研究缺乏实际背景的支持,先进理论的算法一旦应用到实际工业生产就会出现各种各样的问题,制约

5、了其进一步的发展与应用1。在现阶段尚不具备在实验室中真实复现实际工业生产过程的条件下,利用具有典型对象特性的实验装置将是一件探索将理论成果转化为实际应用的有力武器。课题研究的双储液罐水位控制系统实验装置是以水箱的液位为控制变量2,来模拟实际工业控制领域中的过程控制系统,该实验装置在国内外很多高校的实验室都有配备,其价值在于可为学生的自动控制理论课程和毕业设计提供便捷的实验平台。同时,该系统也可为相关科研人员在复杂的控制系统研究方面提供实际的模拟对象。在本论文中,工控软件组态王6.5可有其他工控软件替代,使该实验装置实现了多种控制策略的实验,从而达到了增加该实验装置实验内容的目的;同时本课题中所

6、提出的硬件和软件实现方法也具有较强的可移植性,可以应用推广到其他的教学实验装置的实验内容增加上,极具现实意义。第2章 系统总体方案2.1控制系统构成本系统主要使用工控机和组态软件,使用三菱公司的FX2-48MR,输入设备为ND-6018型智能模块。水位信号需要通过输入设备才能送入IPC,IPC发出的控制信号必须通过输出设备才能送到水泵。此外,为了将IPC的RS232C串行通讯总线转换为ND-6018智能模块需要的RS485通信总线,需要加一块ND-6520智能模块。两个ST-2001GP4BM1B2型扩散硅压力传感器,循水泵,调节阀,出水阀等主要器件组成。水箱里面的水是靠水泵从水源抽水而来的,

7、循水泵采用单相泵(带电容),正常使用电压为220V,假定水箱高3m,上限为2.6m,下限为0.5m。为了监控水箱的水位,必须依靠一定的检测设备对水箱水位这个重要参数进行检测。在这里选用ST-2001GP4BM1B2型扩散硅压力传感器3,量程为29.4kPa,当水位为3m时,输出电流为20mA,当水位为0m时,输出电流为4mA。配电器的作用是为水位传感器提供24v电源,同时将水位传感器与计算机接口进行了电气隔离,型号为DFP-2100。 稳压电源为配电器、水位传感器、智能模块、接触器提供24V工作电源。稳压电源的型号为DFY-3110,最大输出电流为10A。由于PLC的输出触点容量较小(电流小于

8、2A),一般不能用于直接控制较大功率的电气设备,故需要外加接触器3,以便能够对水 泵进行控制。这里选用CZ18-40型直流接触器,其触头额定电压为440V,额定电流为40A,吸引线圈电压为24V。2.1控制系统过程下储液罐 执行器 控制器给定值+ -压力变送器图2.1系统控制图利用组态软件控制整个系统,使它能够通过两个扩散硅压力变送器进行即时的水位检测。以利用循环泵和四个电磁阀控制双罐水位,而且将下水罐的水位控制在给定值,当水位超出设定值时能自动启动关水阀。选取适当的PID调节参数4,实现液位的自动调节和控制。在这里利用组态软件的采集数据的功能,对水罐的水位进行实时监控,通过实际的数字和图表反

9、映出现在的水位状况,生成水位参数的实时报表和历史报表。运行中,能人工输入水位给定值,并且具有手动控制和自动控制两种功能,可以在环境比较恶劣的条件下继续工作。第3章 水箱建模及参数整定3.1 水箱的建模过程 建立被控对象数学模型的方法主要有三种,分别是机理法、实验法、机理法与实验法相结合的混合法。机理法根据被控过程的内部机理,运用已知的静态或动态平衡关系,用数学解析的方法求取被控过程的数学模型。实验法是先给被控过程人为地施加一个输入作用,然后记录过程的输出变化量,得到一系列实验数据或曲线,最后再根据输入输出实验数据确定其模型的结构(包括模型形式、阶次与纯滞后时间等)与模型的参数。混合法是机理演绎

10、法与实验辩识法相互交替使用的一种方法,本设计采用机理法。 从机理出发,依据物料平衡和能量平衡的关系,用理论的方法推导被控对象的数学模型。本次建模采用无延时模型,单容水箱的模型如下图3.1所示: 图3.1 单容水箱模型图单容其流入量Qi,改变阀1的开度可以改变Qi的大小,其流出量为Qo,它取决于用户的需要改变阀2开度可以改变Qo,液位h的变化反映了Qi和Qo不等而引起的储罐中蓄水或泄水的过程,如果Qi作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型就是h与Qi之间的数学表达式。 根据动态物料平衡关系,即在单位时间内贮罐的液体流入量与单位时间内贮罐的液体流出量之差,应等于贮罐中贮存量

11、的变化率,故有表示成增量形式则为 式中 : Qi ,Qo,h分别为偏离某平衡状态Qi0,Qo0,h0的增量;A贮罐的截面积,假设为常量。假设Qo与h近似成线性正比关系,与阀门2处的液阻成反比关系,则 拉式变换: R2ASH(s)+H(s)=R2Qi(s) 写成传递函数: 一般形式: T过程的时间常数,T=R2C K过程的放大系数,K=R2C过程的容量系数,C=A3.2 水箱液位的PID整定本系统主要保持的恒定参数就是液位的给定高度,即控制的任务是控制下水箱液位等于给定值所需要的高度,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。当控制方案确定后,接下来就是整定调节器的参数,在一个单回路

12、系统设计安装就绪后,控制质量的好坏就取决于参数值的选择了,合适的控制参数,可以带来满意的控制效果。反之,控制其参数选择的不合适,就会使控制质量变坏,达不到预期的效果。因此,当一个单回路系统组成好以后,系统的投运和参数整定就变成了一项非常重要的工作。取K为10,T为10,即 下面就是利用matlab仿真模调试,反复调节PID参数,最终得比较理想曲线,其中,对应阶跃响应曲线。比例 积分 微分图3.2 理想PID参数下的阶跃响应曲线第4章 组态王6.5简介与操作界面的设计4.1组态软件介绍组态(configuration)意思就是模块的任意组合,采用组态技术构成的计算机系统工控组态软件的出现,使得大

13、型工业控制系统的组态编程变得十分得简单、容易,工程设计人员不用再设计那些复杂的应用程序(如I/O driver等)。工控组态软件的功能包括数据库生成、历史库生成、图形生成、报表生成、顺序控制功能、连续调节功能5。组态软件是指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。组态软件应该能支持各种工控设备和常见的通信协议,并且通常应提供分布式数据管理和网络功能。4.2基于组态王6.5的液位控制系统上位机部分设计4.2.1上位机主控界面 本系统有手动/自动切换效果,手动增加总的

14、进水量,主界面为监控界面,点击相应的按钮可以进入相应的界面。设计具有报警画面,历史及实时曲线,报表画面,各画面间能实现灵活切换,所有画面都能实现动画效果或数据或曲线显示。系统的主要监控界面如图4.1所示: 图4.1 监控画面4.2.2上位机功能界面当上水箱水位或下水箱水位或者下水箱的温度超过警戒值值,系统就会弹出报警画面,并可以实时记录本次报警实时值,记录于报警画面表格中,可以供使用者随时查询,并寻找报警原因,做出相应的调整,从而可避免系统出现故障,并使可以使系统长期工作在稳定状态,这也是上位机的重要用处之一,对于实际工作具有重要意义。由于本上位机设计的报警功能采用弹出式,当被控变量超过警戒值

15、即可弹出,在图4.1中已有显示。曲线在监控界面可以设定相应水位值,点击自动控制按钮后,系统进入自动控制状态,由于在使用过程中,使用者有时需要观察此时被控变量实时变化或者历史变化,在这里即上水箱水位,下水箱水位及下水箱温度,本上位机设计了实时曲线画面以及历史曲线画面,实时曲线画面实时记录当前被控变量上水箱水位,下水箱水位及下水箱温度的实时变化,历史曲线则记录上水箱水位,下水箱水位及下水箱温度的历史变化信息, 系统运行后,下水箱水位值以及下水箱温度值实时曲线,历史曲线如图4.2所示: 图4.2实时曲线及历史曲线(3) 报表查询 在使用者使用过程中,报表对于提供被控变量的当前或历史具体值提供了极大方

16、便,在这里被控变量即上水箱水位,下水箱水位及下水箱温度,实时曲线和历史曲线只能观察被控变量的变化情况,而实时报表和报表查询则反映和记录被控变量的当前值和历史值在本上位机设计中,可以通过点击报表查询按钮,上位机即可以显示记录以来的报表实时数据,如图4.3所示:图4.3 报表数据第5章 结论与展望本文以双储液罐水箱液位控制系统中的下水箱为被控对象2,研究了该控制系统的单容与双储液罐对象模型,并针对两种对象模型建立了相应的数学模型,在建立合适数学模型的基础上,研究了针对双储液罐水箱数学模型的控制算法,即PID控制算法,进行了基于组态王6.5上位机远程控制的实验实现。本文在提出总体设计方案的基础上,完

17、成了系统的硬件和软件设计,应用程序的编写及调试,经实际运行验证,取得了满意的效果。目前的测试结果而结合远程监控的优势,具有较强的实用性。本系统的任务是在掌握了水位控制系统的基本组成原理的同时,并能掌握结合工程实际,根据生产设备所提出的技术指标组成,选择控制系统结构的思路和方法;另一方面在掌握水位手动控制和水位自动控制的思想上,能合理正确地选择和整定系统的硬件、软件的方法和手段。在信号检测电路和水位控制电路的实现上,既掌握目前的普及应用技术和正在发展的新技术,也掌握了智能功率集成电路、模拟电路以及目前应用广泛的各类器件及由这些器件组成的系统。能从工程实用的角度提出问题、分析问题和解决问题,通过本

18、课题的学习,能胜任对电气传动控制系统的使用、维护和管理的工作。致 谢 本论文设计在王永秀老师的悉心指导和严格要求下业已完成,从课题选择到具体的写作过程,无不凝聚着王永秀老师的心血和汗水,在我课程设计制作期间,王永秀老师为我提供了种种专业知识上的指导和一些富于创造性的建议,没有这样的帮助和关怀,我不会这么顺利的完成课程设计,在此向王永秀老师和表示深深的感谢和崇高的敬意。 同时,在论文写作过程中,我还参考了有关的书籍和论文,在这里一并向有关的作者表示谢意。我还要感谢同组的各位同学,在毕业设计的这段时间里,你们给了我很多的启发,提出了很多宝贵的意见,对于你们帮助和支持,在此我表示深深地感谢。参 考

19、文 献1邓秋连,彭辉. 先进理论在三容水箱液位控制系统建模中的应用 计算机应用,20072韩梅,李俊芬,赵科,张计科.基于T-S模型双容水箱的模糊PID控 内蒙古工业大学学报,2003吴贺荣过程控制系统及仪表实验指导书青岛大学自动化工程学院4孙红英,颜德文,李斌.基于参数自整定模糊PID的三容水箱液位控制 电气应用,20065周兵 林锦实 现场总线技术及组态软件的应用 清华大学出版社 20086刘华波 何文雪 王雪 组态软件及其应用 机械工业出版社 20107Charles P. The Seismic Retrofit of the Golden Gate Bridge. PRC-US Workshop on Seismic Analysis and Design of Special Bridge, Houston: International Society for Experimental Hematology, 1974. 4446

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服