ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:884.81KB ,
资源ID:9584593      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9584593.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(2019北京怀柔初三(上)期末数学(教师版).docx)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2019北京怀柔初三(上)期末数学(教师版).docx

1、2019北京怀柔初三(上)期末 数 学 2019.1 考生须知 1. 本试卷共8页,三道大题,28道小题,满分100分。考试时间120分钟。 2. 认真填写第1、5页密封线内的学校、姓名、考号。 3. 考生将选择题答案一律填在选择题答案表内。 4. 考生一律用蓝色或黑色钢笔、圆珠笔、碳素笔在试卷上按题意和要求作答。 5. 字迹要工整,卷面要整洁。 一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有一个 1.已知∠A为锐角,且sin

2、A=,那么∠A等于 A.15° B.30° C.45° D.60° 2.如图,⊙O是△ABC的外接圆,∠A =,则∠BOC的大小为 A.40° B.30° C.80° D.100° 3.已知△∽△,如果它们的相似比为2∶3,那么它们的面积比是 A.3:2 B. 2:3 C.4:9 D.9:4 4.下面是一个反比例函数的图象,它的表达式可能是 第2题图 第4题图 第5题图 A. B. C. D.

3、 5.正方形ABCD内接于,若的半径是,则正方形的边长是 A. B. C. D. 6.如图,线段BD,CE相交于点A,DE∥BC.若BC3,DE1.5,AD2, 则AB的长为 A.2 B.3 C.4 D.5 第6题图 第8题图 7.若要得到函数的图象,只需将函数的图象 A.先向右平移1个单位长度,再向上平移2个单位长度 B.先向左平移1个单位长度,再向上平移2个单位长度 C.先向左平移1个单位长度,再向下平移2个单位长度 D.先向右平移1个单位长度,再向下平移2个单位长度 8. 如图,一

4、条抛物线与x轴相交于M,N两点(点M在点N的左侧),其顶点P在线段AB上移动,点A,B的坐标分别为(-2,-3),(1,-3),点N的横坐标的最大值为4,则点M的横坐标的最小值为 A.-1 B.-3 C.-5 D.-7 二、填空题(本题共16分,每小题2分) 9.二次函数图象的开口方向是__________. 10.Rt△ABC中,∠C=90°,AC=4,BC=3,则tanA的值为 . 11. 如图,为了测量某棵树的高度,小颖用长为2的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在

5、地面的同一点. 此时竹竿与这一点距离相距6,与树相距15,那么这棵树的高度为 . 13题图 11题图 12.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是 . 13.如图所示的网格是正方形网格,则sin∠BAC与sin∠DAE的大小关系是 . 14.写出抛物线y=2(x-1)2图象上一对对称点的坐标,这对对称点的坐标 可以是 和 . 15.如图,为测量河内小岛B到河边公路的距离,在上顺次取A,C,D三点,在A点测得∠BAD=30°,在C点

6、测得∠BCD=60°,又测得AC=50米,则小岛B到公路的距离为 米. 16.在平面直角坐标系xOy内有三点:(0,-2),(1,-1),(2.17,0.37).则过这三个点 (填“能”或“不能”)画一个圆,理由是 . 三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.已知:ab=53. 求:a+bb. 18.计算:2cos30°-4sin45°+8. 19.已知二次函数y=x2-2x-3. (1)将

7、y=x2-2x-3化成y=a(x-h)2+k的形式; (2)求该二次函数图象的顶点坐标. 20.如图,在△ABC中,∠B为锐角, AB32,BC7,sinB=22,求AC的长. 21. 如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,AD=1,AE=2,BC=3,BE=1.5. 求证:∠DEC=90°. 22.下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程. 已知: △ABC. 求作: 在BC边上求作一点P, 使得△PAC∽△ABC. 作法:如图, ①作线段A

8、C的垂直平分线GH; ②作线段AB的垂直平分线EF,交GH于点O; ③以点O为圆心,以OA为半径作圆; ④以点C为圆心,CA为半径画弧,交⊙O于点D(与点A不重合); ⑤连接线段AD交BC于点P. 所以点P就是所求作的点. 根据小东设计的尺规作图过程, (1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明. 证明: ∵CD=AC, ∴CD = . ∴∠ =∠ . 又∵∠ =∠ , ∴△PAC∽△ABC ( )(填推理的依据).

9、 23.在平面直角坐标系xOy中,直线y=x+2 与双曲线相交于点A(m,3). (1)求反比例函数的表达式; (2)画出直线和双曲线的示意图; (3)若P是坐标轴上一点,当OA=PA时.直接写出点P的坐标. 24. 如图,AB是⊙O的直径,过点B作⊙O的切线BM,点A,C,D分别为⊙O的三等分点,连接AC,AD,DC,延长AD交BM于点E,CD交AB于点F. (1)求证:; (2) 连接OE,若DE=m,求△OBE的周长. 25. 在如图所示的半圆中,P是直径AB上一动点,过点P作PC⊥AB于点

10、P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm. 小聪根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究. 下面是小聪的探究过程,请补充完整: (1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值; x/cm 0 1 2 3 4 5 6 y1/cm 0 2.24 2.83 2.83 2.24 0 y2/cm 0 2.45 3.46 4.24 4.90 5.48 6 (2)在同一平面直角坐标

11、系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象; (3)结合函数图象,解决问题:当△APC有一个角是30°时,AP的长度约为 cm. 26. 在平面直角坐标系xOy中,抛物线y=ax2+2ax+c(其中、为常数,且<0)与x轴交于点A,与y轴交于点B,此抛物线顶点C到x轴的距离为4. (1)求抛物线的表达式; (2)求∠CAB的正切值; (3)如果点是x轴上的一点,且∠ABP=∠CAO,直接写出点P的坐标. 27. 在菱形ABCD中,∠AD

12、C=60°,BD是一条对角线,点P在边CD上(与点C,D不重合),连接AP,平移,使点D移动到点C,得到,在BD上取一点H,使HQ=HD,连接HQ,AH,PH. (1) 依题意补全图1; (2)判断AH与PH的数量关系及∠AHP的度数,并加以证明; 图1 备用图 (3)若,菱形ABCD的边长为1,请写出求DP长的思路. (可以不写出计算结果) 28. 在平面直角坐标系xOy中,点A(x,0),B(x,y),若线段AB上存在一点Q满足,则称点Q 是线段AB 的“倍分点”. (1)若点A(1,0),AB=3,点Q 是线段AB 的“倍分点”. ①求点

13、Q的坐标; ②若点A关于直线y= x的对称点为A′,当点B在第一象限时,求; (2)⊙T的圆心T(0, t),半径为2,点Q在直线上,⊙T上存在点B,使点Q 是线段AB 的“倍分点”,直接写出t的取值范围. 参考答案 一、选择题(本题共16分,每小题2分) 下列各题均有四个选项,符合题意的选项只有一个 题号 1 2 3 4 5 6 7 8 答案 B D C B B C A C 二、填空题(本题共16分,每小题2分) 9.下10. 11. 12.13.sin∠BAC>sin∠DAE 14.(2,2),(0,2)(答案不唯一)

14、15.16.能,因为这三点不在一条直线上. 三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.解:∵,∴=+1=.………………………5分 ………………………3分 ………………………4分 ………………………5分 19.解:(1)y=x2-2x-3 =x2-2x+1-1-3……………………………2分 =(x-1)2-4.……………………3分 (2)∵y=(x-1)2-4, ∴该二次函数图象的顶点坐标是(1,-4).………………………5分 20.解:作AD⊥BC于点D,∴∠ADB=∠ADC=90°. ∵,

15、∴∠B=∠BAD=45°.………………2分 ∵AB, ∴AD=BD=3.…………………………3分 ∵BC7,∴DC=4. ∴在Rt△ACD中, .…………………………5分 21.(1)证明:∵AB⊥BC,∴∠B=90°. ∵AD∥BC,∴∠A=90°.∴∠A=∠B.………………2分 ∵AD=1,AE=2,BC=3,BE=1.5, ∴.∴ ∴△ADE∽△BEC.∴∠3=∠2.………………3分 ∵∠1+∠3=90°,∴∠1+∠2=90°. ∴∠DEC=90°.………………5分 22.(1)补全图形如图所示:………………2分 (2),∠CAP=∠B,∠ACP=∠ACB,

16、 有两组角对应相等的两个三角形相似.………………5分 23.解:(1)∵直线y=x+2与双曲线相交于点A(m,3). ∴3=m+2,解得m=1. ∴A(1,3)……………………………………1分 把A(1,3)代入解得k=3, ……………………………………2分 (2)如图……………………………………4分 (3)P(0,6)或P(2,0) ……………………………………6分 24.证明:(1)∵点A、C、D为的三等分点, ∴ , ∴AD=DC=AC. ∵AB是的直径, ∴AB⊥CD. ∵过点B作的切线BM, ∴BE⊥AB. ∴.…………………………3分 (2) 连接DB

17、 由双垂直图形容易得出∠DBE=30°,在Rt△DBE中,由DE=m,解得BE=2m,DB=m. ‚在Rt△ADB中利用30°角,解得AB=2m,OB=m.…………………4分 ƒ在Rt△OBE中,由勾股定理得出OE=m.………………………………5分 ④计算出△OBE周长为2m+m+m.………………………………6分 25.(1)3.00…………………………………1分 (2)…………………………………………4分 (3)1.50或4.50……………………………2分 26.解:(1)由题意得,抛物线的对称轴是直线.………1分 ∵a<0,抛物线开口向下,又与轴有交点,∴抛物线的

18、顶点C在x轴的上方. 由于抛物线顶点C到x轴的距离为4,因此顶点C的坐标是. 可设此抛物线的表达式是, 由于此抛物线与轴的交点的坐标是,可得. 因此,抛物线的表达式是.………………………2分 (2)点B的坐标是. 联结.∵,,,得. ∴△为直角三角形,. 所以. 即的正切值等于.………………4分 (3)点p的坐标是(1,0).………………6分 27.(1)补全图形,如图所示.………………2分 (2)AH与PH的数量关系:AH=PH,∠AHP=120°. 证明:如图,由平移可知,PQ=DC. ∵四边形ABCD是菱形,∠ADC=60°, ∴AD=DC,∠ADB=∠BD

19、Q=30°.∴AD=PQ. ∵HQ=HD,∴∠HQD=∠HDQ=30°.∴∠ADB=∠DQH,∠DHQ=120°. ∴△ADH≌△PQH.∴AH=PH,∠AHD=∠PHQ.∴∠AHD+∠DHP =∠PHQ+∠DHP. ∴∠AHP=∠DHQ. ∵∠DHQ=120°,∴∠AHP=120°.………………5分 (3)求解思路如下: 由∠AHQ=141°,∠BHQ=60°解得∠AHB=81°. a.在△ABH中,由∠AHB=81°,∠ABD=30°,解得∠BAH=69°. b.在△AHP中,由∠AHP=120°,AH=PH,解得∠PAH=30°. c.在△ADB中,由∠ADB=∠ABD= 30°,解得∠BAD=120°. 由a、b、c可得∠DAP=21°. 在△DAP中,由∠ADP= 60°,∠DAP=21°,AD=1,可解△DAP, 从而求得DP长.…………………………………7分 28.解:(1)∵A(1,0),AB=3 ∴B(1,3)或B(1,-3) ∵ ∴Q(1,1)或Q(1,-1)………………3分 (2)点A(1,0)关于直线y= x的对称点为A′(0,1) ∴QA =QA′ ∴………………5分 (3)-4≤t≤4………………7分 12 / 12

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服