ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:191.03KB ,
资源ID:9582212      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9582212.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(平方根(提高)知识讲解.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

平方根(提高)知识讲解.doc

1、 平方根(提高) 【学习目标】 1.了解平方根、算术平方根的概念,会用根号表示数的平方根. 2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根. 【要点梳理】 要点一、平方根和算术平方根的概念 1.算术平方根的定义 如果一个正数的平方等于,即,那么这个正数x叫做的算术平方根(规定0的算术平方根还是0);的算术平方根记作,读作“的算术平方根”,叫做被开方数. 要点诠释:当式子有意义时,一定表示一个非负数,即≥0,≥0. 2.平方根的定义   如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算. (≥

2、0)的平方根的符号表达为,其中是的算术平方根. 要点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2)结果不同:和 2.联系:(1)平方根包含算术平方根; (2)被开方数都是非负数; (3)0的平方根和算术平方根均为0. 要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根. 要点三、平方根的性质 要点四、平方根小数点位数移动规律 被开方数的小数点向右或者向左移动

3、2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:,,,. 【典型例题】 类型一、平方根和算术平方根的概念 1、(2020秋•张家港市校级期中)已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+b+c的平方根. 【思路点拨】首先根据平方根与立方根的概念可得2a﹣1与3a+b﹣9的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+b+c,根据平方根的求法可得答案. 【答案与解析】 解:根据题意,可得2a﹣1=9,3a+b﹣9=8; 故a=5,b=2; 又∵2<<3, ∴c=2, ∴a+b+c=5+2+2=9, ∴9的

4、平方根为±3. 【总结升华】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,还要掌握实数的基本运算技能,灵活应用. 举一反三: 【变式】已知2-1与-+2是的两个不同的平方根,求的值. 【答案】2-1与-+2是的平方根,所以2-1与-+2互为相反数. 解:当2-1+(-+2)=0时,=-1, 所以= 2、为何值时,下列各式有意义? (1); (2); (3); (4). 【答案与解析】 解:(1)因为,所以当取任何值时,都有意义. (2)由题意可知:,所以时,有意义. (3)由题意可知:解得:.所以时有意义. (4)由题意可知:,解得且.

5、所以当且时,有意义. 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义. 举一反三: 【变式】已知,求的算术平方根. 【答案】 解:根据题意,得则,所以=2,∴, ∴的算术平方根为. 类型二、平方根的运算 3、求下列各式的值. (1);(2). 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序. 【答案与解析】 解:(1); (2). 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序

6、进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据来解. 类型三、利用平方根解方程 4、求下列各式中的. (1) (2); (3) 【答案与解析】 解:(1)∵ ∴ ∴ (2)∵ ∴ ∴+1=±17 =16或=-18. (3)∵ ∴ ∴ ∴ 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度. 举一反三: 【变式】求下列等式中的: (1)若,则=__

7、 (2),则=______; (3)若则=______; (4)若,则=______. 【答案】(1)±1.1;(2)±13;(3);(4)±2. 类型四、平方根的综合应用 5、已知、是实数,且,解关于的方程. 【答案与解析】 解:∵、是实数,,,, ∴,. ∴-3,. 把-3,代入,得-+2=-4,∴=6. 【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出、的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可. 举一反三: 【变式】若,求的值. 【答案】 解:由,得,

8、即,. ①当=1,=-1时,. ②当=-1,=-1时,. 6、小丽想用一块面积为400的正方形纸片,沿着边的方向裁出一块面积为300 的长方形纸片,使它长宽之比为,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片. 【答案与解析】 解:设长方形纸片的长为3 (>0) ,则宽为2,依题意得 . . . ∵ >0, ∴ . ∴ 长方形纸片的长为. ∵ 50>49, ∴. ∴ , 即长方形纸片的长大于20. 由正方形纸片的面积为400 , 可知其

9、边长为20, ∴ 长方形的纸片长大于正方形纸片的边长. 答: 小丽不能用这块纸片裁出符合要求的长方形纸片. 【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20的正方形纸片裁出长方形纸片. 举一反三: 【变式】(2020春•台安县月考)某小区为了促进全民健身活动的开展,决定在一块面积约为1000m2的正方形空地上建一个篮球场,已知篮球场的面积为420m2,其中长是宽的倍,篮球场的四周必须留出1m宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场? 【答案】 解:设篮球场的宽为xm,那么长为m, 由题意知, 所以x2=225, 因为x为正数, 所以x==15, 又因为=900<1000, 所以按规定在这块空地上建一个篮球场.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服