ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:176.03KB ,
资源ID:9582163      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9582163.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(八年级下册数学苏科版-9-3平行四边形提高-教案.docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级下册数学苏科版-9-3平行四边形提高-教案.docx

1、教学内容 平行四边形提高 教学目标 掌握平行四边形的性质及应用 重点 对角线的应用 难点 灵活运用 教学过程 知识梳理: 两组对边分别平行的四边形叫平行四边形,它不但具有一般四边形的所有性质,而且还具有特殊的性质,主要体现在边、角、对角线 关于边一组对边平行且相等两组对边分别平行两组对边分别相等 关于角对角相等邻角互补 关于对角线:对角线互相平分 四边形的知识是三角形知识的延伸,因此,在解平行四边形相关问题时,既要注意三角形知识、全等三角形的运用,又要善于在平行四边形的背景下思考问题,利用平行四边形的性质解决问题 例题精讲: 例1:如图,在□ABCD中,A

2、D=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF,CF,则下列结论中一定成立的是 ; ① ∠DCF=12∠BCD; ②EF=CF; ③S△BEC=S△CEF; ④∠DFE=3∠AEF 例2:在面积为15的平行四边形ABCD中,过点A作AE⊥直线BC于点E,作AF⊥直线CD于点F,若AB=5,BC=6,则CE+CF的值为( ) A. 11+1132 B. 11-1132 C. 11+1132或11-1132 D. 11+1132或1+32 注意:四边形具有不稳定性,面积一定的平行四边形,其形状不能确定,

3、所以要全面讨论 例3:如图,△ABC的边长是6的等边三角形,P是AC边上一动点,由A向C运动,(与A,C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过点P作PE⊥AB于点E,连接PQ交AB于点D (1) 当∠BQD=30°时,求AP的长 (2) 运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长,如果变化,请说明理由 解析:对于(2),怎样运用隐含的条件PA=QB是解题的关键,构造全等三角形、平行四边形是思路之一。 例4:如图是某区部分街道示意图,其中CE垂直平分AF,AB∥DC,BC∥DF,从B站乘车到

4、E站只有两条路线有直达的公交车,路线1是B→D→A→E,路线2是B→C→F→E,请比较两条路线的路程的长短,并说明理由 解析:解题的关键是判定四边形BDFC的形状 例5:已知四边形ABCD,仅从下列条件中任取两个加以组合,能否得出四边形ABCD是平行四边形的结论? ① AB∥CD;②BC∥AD;③AB=CD;④BC=AD;⑤∠A=∠C;⑥∠B=∠D 基础练习: 练习1:已知平行四边形ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF= cm 练习2:如图,平行四边形ABCD中,AC,BD

5、相交于O点,AB=10cm,AD=8cm,若AC⊥BC,则OB= 练习3:如图,平行四边形ABCD的对角线相较于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M,如果△CDM的周长为8,那么平行四边形的周长是 ; 练习4:如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边三角形ACD、等边三角形ABE,EF⊥AB于点F,连接DF,当AC∶AB= 时,四边形ADFE时平行四边形 练习5:平行四边形ABCD中,对角线AC和BD相交于点O,AC=12,BD=10,AB=m,那么m的取值范围是 ;

6、 练习6:如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG,交BC于点E,若BF=6,AB=5,则AE= ; 练习7:顺次连接平面上A、B、C、D四点得到一个四边形,从①AB∥CD;②BC=AD;③∠A=∠C;④∠B=∠D四个条件中任取其中两个,可以得出四边形ABCD是平行四边形这一结论的情况有 种 练习8:如图,平行四边形ABCD的对角线AC、BD交于点O,AE平分∠BAD,交BC于点E,且∠ADC=60°,AB=12BC,连接OE,下列结论:①∠CAD=30°;②S□ABCD=AB·AC;③OB=AB;④OE=14BC,其中正

7、确的有 ; 练习9:如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角三角形ABD和等腰直角三角形ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F (1) 判断四边形ACGD的形状,并说明理由 (2) 求证:BE=CD,BE⊥CD 练习10:如图□ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°) (1) 当α=60°时,求CE的长 (2) 当60°<α<90°时,是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值,若不存在,请说明理由 练习11:已知△ABC中,∠B=∠C,P是BC边上一点,作∠CPE=∠BPF,分别交边AC,AB于点E,F (1) 若∠CPE=∠C(如图①),求证:PE+PF=AB (2) 若∠CPE≠∠C,过点B作∠CBD=∠CPE,交CA(或CA的延长线)于点D,试猜想:线段PE,PF和BD之间的数量关系,并就∠CPE>∠C情形(如图②)说明理由 6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服