ImageVerifierCode 换一换
格式:DOCX , 页数:18 ,大小:671.73KB ,
资源ID:9580737      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9580737.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(专题2-10-圆中的计算与证明的综合大题专项训练(50道)(苏科版)(原卷版).docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

专题2-10-圆中的计算与证明的综合大题专项训练(50道)(苏科版)(原卷版).docx

1、专题2.10 圆中的计算与证明的综合大题专项训练(50道) 【苏科版】 考卷信息: 本套训练卷共50题,题型针对性较高,覆盖面广,选题有深度,涵盖了圆中的计算与证明的综合问题的所有类型! 一.解答题(共50小题) 1.(2022秋•柯桥区月考)如图,D是⊙O弦BC的中点,A是⊙O上的一点,OA与BC交于点E,已知AO=8,BC=12. (1)求线段OD的长; (2)当EO=2BE时,求DE的长. 2.(2022•市中区校级一模)如图,AB是⊙O的直径,C是BD的中点,CE⊥AB于点E,BD交CE于点F. (1)求证:CF=BF; (2)若CD=6,AC=8,求⊙O的半

2、径及CE的长. 3.(2022秋•岱岳区期末)已知⊙O的直径为10,点A、点B、点C在⊙O上,∠CAB的平分线交⊙O于点D. (1)如图①,若BC为⊙O的直径,AB=6,求AC、BD、CD的长; (2)如图②,若∠CAB=60°,求BD的长. 4.(2022•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD. (1)求证:BD=CD; (2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由. 5.(2022秋•辛集市期末)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作C

3、D∥AB交⊙O于点D,连接AD,延长CD至点F,使BF=BC. (1)求证:BF∥AD; (2)如图2,当CD为直径,半径为1时,求弧BD,线段BF,线段DF所围成图形的面积. 6.(2022•凤翔县一模)如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,CD与⊙O相切于点C. (1)求证:∠A=∠CDE; (2)若AB=4,BD=3,求CD的长. 7.(2022秋•湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D. (1)若PA=6,求△PCD的周长. (2)若∠P=5

4、0°求∠DOC. 8.(2022秋•仪征市校级月考)如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆. (1)正方形ABCD与正六边形AEFCGH的边长之比为   ; (2)连接BE,BE是否为⊙O的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由. 9.(2022•高唐县二模)如图,在菱形ABCD中,对角线AC,BD交于点O,∠BAO=30°,AC=8.过点O作OH⊥AB于点H,以点O为圆心,OH为半径的半圆交AC于点M. (1)求图中阴影部分的面积; (2)点P是BD上的一个动点(点P不与点B,D重合),当PH+PM的值最小时,求PD的长度.

5、 10.(2022•黔东南州模拟)如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E. (1)求OE的长; (2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S. 11.(2022秋•如东县期末)如图,CD是⊙O的直径,弦AB⊥CD于点E,∠DAB=30°,AB=43. (1)求CD的长; (2)求阴影部分的面积. 12.(2022秋•松滋市期末)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EO、FO,若DE=43,∠DPA=45° (1)求⊙

6、O的半径. (2)若图中扇形OEF围成一个圆锥侧面,试求这个圆锥的底面圆的半径. 13.(2022•沈阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD (1)求证:BD平分∠ABC; (2)当∠ODB=30°时,求证:BC=OD. 14.(2022•本溪)如图,△ABC中,AB=AC,点E是线段BC延长线上一点,ED⊥AB,垂足为D,ED交线段AC于点F,点O在线段EF上,⊙O经过C、E两点,交ED于点G. (1)求证:AC是⊙O的切线; (2)若∠E=30°,AD=1,BD=5,求⊙O的半径. 15.(2022•崇

7、左)如图,正方形ABCD的边长为1,其中弧DE、弧EF、弧FG的圆心依次为点A、B、C. (1)求点D沿三条弧运动到点G所经过的路线长; (2)判断直线GB与DF的位置关系,并说明理由. 16.(2022•凉山州二模)如图,AB是半圆的直径,C、D是半圆上的两点,且∠BAC=20°,AD=CD,求:∠BCD的度数. 17.(2022•白云区一模)如图,⊙O的半径OA⊥OC,点D在AC上,且AD=2CD,OA=4. (1)∠COD=   °; (2)求弦AD的长; (3)P是半径OC上一动点,连接AP、PD,请求出AP+PD的最小值,并说明理由. (解答上面各题时,请

8、按题意,自行补足图形) 18.(2022•西湖区校级一模)如图,AB是⊙O的直径,C是BD的中点,CE⊥AB于E,BD交CE于F. (1)求证:CF=BF; (2)若CD=6,AC=8,求BE、CF的长. 19.(2022•武昌区校级自主招生)如图,已知⊙O的直径为10,点A、B、C在⊙O上,∠CAB的平分线交⊙O于点D. (1)图①,当BC为⊙O的直径时,求BD的长. (2)图②,当BD=5时,求∠CDB的度数. 20.(2022•东莞市校级模拟)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F. (1)当∠E=∠F时,则∠ADC=   °;

9、 (2)当∠A=55°,∠E=30°时,求∠F的度数; (3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小. 21.(2022•鹿城区校级模拟)如图,△ABC中,AB>AC,AE是其外接圆的切线,D为AB上的点,且AD=AC=AE.求证:直线DE过△ABC的内心. 22.(2022•鼓楼区校级模拟)如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动. (1)求图1中∠APN的度数是    ;图2中,∠APN的度数是  

10、  ,图3中∠APN的度数是    . (2)试探索∠APN的度数与正多边形边数n的关系(直接写答案)    . 23.(2022•温州一模)如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,AE=CE,过点C作CD∥AB交BE的延长线于D,AD交⊙O于点F. (1)求证:四边形ABCD是菱形; (2)连接OA、OF,若∠AOF=3∠FOE,且AF=3,求劣弧CF的长. 24.(2022•岳麓区校级一模)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD. (1)求证:AD=AN; (2)若AB=42,ON=1,求⊙O的半径.

11、 25.(2022•普陀区模拟)如图,在⊙O中,AD、BC相交于点E,OE平分∠AEC. (1)求证:AB=CD; (2)如果⊙O的半径为5,AD⊥CB,DE=1,求AD的长. 26.(2022•乌鲁木齐一模)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°. (1)若AB=4,求弧CD的长; (2)若弧BC=弧AD,AD=AP,求证:PD是⊙O的切线. 27.(2022•饶平县校级模拟)如图,⊙O中,弦CD与直径AB交于点H. (1)当∠B+∠D=90°时,求证:H是CD的中点; (2)若H为CD的中点,且CD=22,BD=3

12、求AB的长. 28.(2022•苏州模拟)如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=32CD,以DE,DF为邻边作矩形DEGF.设AQ=3x. (1)用关于x的代数式表示BQ=   ,DF=   . (2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长. (3)当点P在点A右侧时,作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长.

13、 29.(2022•福建模拟)如图1,△ABC中,AB=AC,⊙O是△ABC的外接圆,过点B作BE⊥AC,交⊙O于点D,垂足为E,连接AD. (1)求证:∠BAC=2∠CAD; (2)如图2,连接CD,点F在线段BD上,且DF=2DC,G是BC的中点,连接FG,若FG=2,CD=22,求⊙O的半径. 30.(2022•苏州模拟)如图,已知点D是△ABC外接圆⊙O上的一点,AC⊥BD于G,连接AD,过点B作直线BF∥AD交AC于E,交⊙O于F,若点F是弧CD的中点,连接OG,OD,CD (1)求证:∠DBF=∠ACB; (2)若AG=62GE,试探究∠GOD与∠ADC之间的数量

14、关系,并证明. 31.(2022•莱芜)如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中AB上一点,延长DA至点E,使CE=CD. (1)求证:AE=BD; (2)若AC⊥BC,求证:AD+BD=2CD. 32.(2022•三明)如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP. (1)求∠OAC的度数; (2)如图①,当CP与⊙A相切时,求PO的长; (3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰

15、三角形? 33.(2022•昆明)(1)如图(1),OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点E. 求证:CD=CE; (2)若将图(2)中的半径OB所在直线向上平行移动交OA于F,交⊙O于B′,其他条件不变,那么上述结论CD=CE还成立吗?为什么? (3)若将图(3)中的半径OB所在直线向上平行移动到⊙O外的CF,点E是DA的延长线与CF的交点,其他条件不变,那么上述结论CD=CE还成立吗?为什么? 34.(2022•襄城区模拟)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.

16、1)求证:AD=AN; (2)若AB=8,ON=1,求⊙O的半径. 35.(2022•台州校级模拟)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面. (2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径. (3)在(2)的条件下,小明把一只宽12cm的方形小木船放在修好后的圆柱形水管里,已知船高出水面13cm,问此小船能顺利通过这个管道吗? 36.(2022•泰州模拟)如图,BC是⊙O的直径,弦AD⊥BC,垂足为

17、H,已知AD=8,OH=3. (1)求⊙O的半径; (2)若E是弦AD上的一点,且∠EBA=∠EAB,求线段BE的长. 37.(2022•河北)图1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图2是车棚顶部截面的示意图,AB所在圆的圆心为O.车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积.(不考虑接缝等因素,计算结果保留π) 38.(2022•咸宁模拟)小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究. (1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙O中,C是劣弧AB的中点,直线CD⊥AB于

18、点E,则AE=BE.请证明此结论; (2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,PA,PB组成⊙O的一条折弦.C是劣弧AB的中点,直线CD⊥PA于点E,则AE=PE+PB.可以通过延长DB、AP相交于点F,再连接AD证明结论成立.请写出证明过程; (3)如图3,PA.PB组成⊙O的一条折弦,若C是优弧AB的中点,直线CD⊥PA于点E,则AE,PE与PB之间存在怎样的数量关系?写出结论,不必证明. 39.(2022•南开区一模)已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E. (1)∠E的度数为   ; (2)如图2,AB

19、与CD交于点F,请补全图形并求∠E的度数; (3)如图3,弦AB与弦CD不相交,求∠AEC的度数. 40.(2022•安徽一模)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°. (1)判断△ABC的形状,并证明你的结论. (2)证明:PA+PB=PC. 41.(2022•和平区一模)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD. (Ⅰ)如图①,求∠ODE的大小; (Ⅱ)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小. 42.(2022•和平区二模)已知AB是⊙O的直径,AB=2,点C

20、点D在⊙O上,CD=1,直线AD,BC交于点E. (Ⅰ)如图1,若点E在⊙O外,求∠AEB的度数. (Ⅱ)如图2,若点E在⊙O内,求∠AEB的度数. 43.(2022•南开区二模)如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F. (Ⅰ)如图1,当∠ACD=45°时,请你判断DE与⊙O的位置关系并加以证明; (Ⅱ)如图2,当点F是CD的中点时,求△CDE的面积. 44.(2022•红桥区二模)已知⊙O是△ABC的外接圆,过点A作⊙O的切线,与CO的延长线于点P,CP与⊙O交于点D. (

21、1)如图①,若AP=AC,求∠B的大小; (2)如图②,若AP∥BC,∠P=42°,求∠BAC的大小. 45.(2022秋•镇海区期末)如图,在△ABC中,D在边AC上,圆O为锐角△BCD的外接圆,连结CO并延长交AB于点E. (1)若∠DBC=α,请用含α的代数式表示∠DCE; (2)如图2,作BF⊥AC,垂足为F,BF与CE交于点G,已知∠ABD=∠CBF. ①求证:EB=EG; ②若CE=5,AC=8,求FG+FB的值. 46.(2022秋•虹口区校级期末)如图,等边△ABC内接于⊙O,P是AB上任一点(点P与点A、B重合),连接AP、BP,过点C作CM∥BP交PA

22、的延长线于点M. (1)求∠APC和∠BPC的度数; (2)求证:△ACM≌△BCP; (3)若PA=1,PB=2,求四边形PBCM的面积; (4)在(3)的条件下,求AB的长度. 47.(2022秋•赣榆区期中)铁匠王老五要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)请你帮助他算一算. (1)

23、请说明方案一不可行的理由; (2)判断方案二是否可行?若可行,请确定圆锥的母线长l及其底面圆半径r;若不可行,请说明理由. 48.(2022•浙江校级自主招生)如图,已知圆O的圆心为O,半径为3,点M为圆O内的一个定点,OM=5,AB、CD是圆O的两条相互垂直的弦,垂足为M. (1)当AB=4时,求四边形ADBC的面积; (2)当AB变化时,求四边形ADBC的面积的最大值. 49.(2022•浙江校级自主招生)如图,O为等边△ABC 的外接圆,半径为2,点D在劣弧AB上运动(不与点A,B重合),连接DA,DB,DC.若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的 位置,△DMN 的周长有最小值t,随着点D的运动,t 的值会发生变化,求所有t值中的最大值. 50.(2022•枣庄校级模拟)如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB. (1)求证:直线BF是⊙O的切线; (2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长和扇形DOE的面积; (3)填空:在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O的距离为5,则r的取值范围为   .

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服