ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:39.66KB ,
资源ID:9578682      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9578682.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(2023高考数学二轮复习-专题6---第2讲-椭圆、双曲线、抛物线(学生版).docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2023高考数学二轮复习-专题6---第2讲-椭圆、双曲线、抛物线(学生版).docx

1、 第2讲 椭圆、双曲线、抛物线 【要点提炼】 考点一 椭圆、双曲线、抛物线的定义与标准方程 1.圆锥曲线的定义 (1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|). (2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|). (3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M. 2.求圆锥曲线标准方程“先定型,后计算” 所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值. 【热点突破】 【典例】1 (1)(2020·广州四校模拟)若椭圆+=1

2、其中a>b>0)的离心率为,两焦点分别为F1,F2,M为椭圆上一点,且△F1F2M的周长为16,则椭圆C的方程为(  ) A.+=1 B.+=1 C.+=1 D.+=1 (2)(2020·全国Ⅰ)设F1,F2是双曲线C:x2-=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为(  ) A. B.3 C. D.2 【拓展训练】1 (1)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方程为(  ) A.y2=4x或y2=8x B.y2=2x或y2=8x C.y2=4x或y

3、2=16x D.y2=2x或y2=16x (2)已知椭圆C:+=1(m>4)的右焦点为F,点A(-2,2)为椭圆C内一点,若椭圆C上存在一点P,使得|PA|+|PF|=8,则实数m的取值范围是(  ) A.(6+2,25] B.[9,25] C.(6+2,20] D.[3,5] 【要点提炼】 考点二 圆锥曲线的几何性质 1.求离心率通常有两种方法 (1)求出a,c,代入公式e=. (2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围. 2.与双曲线-=1(a>0,b>0)共渐近线bx±ay=0的双曲线方程为-=λ

4、λ≠0). 【热点突破】 【典例】2 (1)设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,过F2的直线交椭圆于A,B两点,且·=0,=2,则椭圆E的离心率为(  ) A. B. C. D. (2)(2020·莆田市第一联盟体联考)已知直线l:y=x-1与抛物线y2=4x相交于A,B两点,M是AB的中点,则点M到抛物线准线的距离为(  ) A. B.4 C.7 D.8 【拓展训练】2 (1)已知F是抛物线C:y2=2px(p>0)的焦点,抛物线C的准线与双曲线Γ:-=1(a>0,b>0)的两条渐近线交于A,B两点,若△ABF为等边三角形,则Γ的离心率e等于

5、  ) A. B. C. D. (2)已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2)是抛物线C上一点,圆M与线段MF相交于点A,且被直线x=截得的弦长为|MA|,若=2,则|AF|等于(  ) A. B.1 C.2 D.3 【要点提炼】 考点三 直线与圆锥曲线的位置关系 解决直线与椭圆的位置关系问题,经常利用设而不求的方法,解题要点如下: (1)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2); (2)联立直线的方程与椭圆的方程; (3)消元得到关于x或y的一元二次方程; (4)利用根与系数的关系设而不求; (5)把题干中的条件转

6、化为含有x1+x2,x1x2或y1+y2,y1y2的式子,进而求解即可. 【热点突破】 【典例】3 (2020·全国Ⅲ)已知椭圆C:+=1(0

7、 C.+=1 D.+=1 (2)设F为抛物线y2=2px(p>0)的焦点,斜率为k(k>0)的直线过F交抛物线于A,B两点,若|FA|=3|FB|,则直线AB的斜率为(  ) A. B.1 C. D. 专题训练 一、单项选择题 1.(2020·福州模拟)已知双曲线-=1(a>0,b>0)的渐近线方程为y=±x,则此双曲线的离心率为(  ) A. B. C. D. 2.(2020·全国Ⅰ)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p等于(  ) A.2 B.3 C.6 D.9 3.已知椭圆C:

8、+=1(a>b>0)的左、右焦点分别为F1,F2,左、右顶点分别为M,N,过F2的直线l交C于A,B两点(异于M,N),△AF1B的周长为4,且直线AM与AN的斜率之积为-,则C的方程为(  ) A.+=1 B.+=1 C.+=1 D.+y2=1 4.设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为(  ) A. B. C.2 D. 5.(2020·潍坊模拟)已知点P为双曲线C:-=1(a>0,b>0)右支上一点,F1,F2分别为C的左、右焦点,直线PF1与C的一条渐

9、近线垂直,垂足为H,若|PF1|=4|HF1|,则该双曲线的离心率为(  ) A. B. C. D. 二、多项选择题 6.(2020·新高考全国Ⅰ)已知曲线C:mx2+ny2=1.(  ) A.若m>n>0,则C是椭圆,其焦点在y轴上 B.若m=n>0,则C是圆,其半径为 C.若mn<0,则C是双曲线,其渐近线方程为y=±x D.若m=0,n>0,则C是两条直线 7.已知双曲线C过点(3,)且渐近线为y=±x,则下列结论正确的是(  ) A.C的方程为-y2=1 B.C的离心率为 C.曲线y=ex-2-1经过C的一个焦点 D.直线x-y-1=0与C有两个公共点

10、 8.已知抛物线C:y2=2px(p>0)的焦点为F,直线l的斜率为且经过点F,直线l与抛物线C交于A,B两点(点A在第一象限),与抛物线的准线交于点D.若|AF|=8,则下列结论正确的是(  ) A.p=4 B.= C.|BD|=2|BF| D.|BF|=4 三、填空题 9.(2019·全国Ⅲ)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________. 10.(2020·全国Ⅰ)已知F为双曲线C:-=1(a>0,b>0)的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率

11、为________. 11.设双曲线mx2+ny2=1的一个焦点与抛物线y=x2的焦点相同,离心率为2,则抛物线的焦点到双曲线的一条渐近线的距离为________. 12.如图,抛物线C1:y2=2px和圆C2:2+y2=,其中p>0,直线l经过C1的焦点,依次交C1,C2于A,D,B,C四点,则·的值为________. 四、解答题 13.(2020·全国Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|. (1)求C1的离心率; (2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程. 14.已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且到原点的距离为2. (1)求抛物线E的方程; (2)已知点G(-1,0),延长AF交抛物线于点B,证明:以点F为圆心且与直线GA相切的圆必与直线GB相切.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服