ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:150.46KB ,
资源ID:9578353      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9578353.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(相似三角形的判定--知识讲解(基础).doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

相似三角形的判定--知识讲解(基础).doc

1、相似三角形的判定--知识讲解(基础) 【学习目标】 1、了解相似三角形的概念, 掌握相似三角形的表示方法及判定方法; 2、进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力. 【要点梳理】 要点一、相似三角形 在和中,如果我们就说与相似,记作∽.k就是它们的相似比,“∽”读作“相似于”. 要点诠释: (1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′; (2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个

2、三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等. 要点二、相似三角形的判定定理 1.判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似. 2.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.  3.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似. 要点诠释:   此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的. 4.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么

3、这两个三角形相似. 要点诠释:   要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似. 要点三、相似三角形的常见图形及其变换: 【典型例题】 类型一、相似三角形 1. 下列能够相似的一组三角形为( ).   A.所有的直角三角形       B.所有的等腰三角形   C.所有的等腰直角三角形     D.所有的一边和这边上的高相等的三角形 【答案】C 【解析】A中只有一组直角相等,其他的角是否对应相等不可知; B中什么条件都不满足;D中只有一条对应边的比相等; C中所有三角形都是由90

4、°、45°、45°角组成的三角形,且对应边的比也相等. 答案选C. 【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等. 举一反三: 【变式】(2020秋•江阴市期中)给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有   (填序号). 【答案】①②④⑤. 类型二、相似三角形的判定 2. 如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.       

5、             【思路点拨】充分利用平行寻找等角,以确定相似三角形的个数. 【答案与解析】∵ 四边形ABCD是平行四边形,    ∴ AB∥CD,AD∥BC,      ∴ △BEF∽△CDF,△BEF∽△AED.      ∴ △BEF∽△CDF∽△AED.      ∴ 当△BEF∽△CDF时,相似比; 当△BEF∽△AED时,相似比;      当△CDF∽△AED时,相似比. 【总结升华】此题考查了相似三角形的判定(有两角对应相等的两三角形相似)与性质(相似三角形的对应边成比例).解题的关键是要仔细

6、识图,灵活应用数形结合思想. 举一反三: 【变式】 如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE. 【答案】∵ AD、CE是△ABC的高, ∴∠AEF=∠CDF=90°, 又∵∠AFE=∠CFE, ∴△AEF∽△CDF. ∴, 即AF·FD=CF·FE. 3.(2020秋•揭西县校级期末)如图,F为平行四边形ABCD的边AD的延长线上的一点,BF分别交于CD、AC于G、E,若EF=32,GE=8,求BE. 【答案与解析】解

7、设BE=x, ∵EF=32,GE=8, ∴FG=32﹣8=24, ∵AD∥BC, ∴△AFE∽△CBE, ∴=, ∴则==+1① ∵DG∥AB, ∴△DFG∽△CBG, ∴= 代入① =+1, 解得:x=±16(负数舍去), 故BE=16. 【总结升华】此题主要考查了相似三角形的判定、平行四边形的性质,得出△DFG∽△CBG是解题关键. 4. 已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF. 【思路点拨】从求证可以判断是运用相似,再根据BP2=PE·PF,

8、可以判定所给的线段不能组成相似三角形,这就需要考虑线段的等量转移了. 【答案与解析】连接,      ,,      是的中垂线,,      ,,      .      ,      .      又,      ∽,      ,      . 【总结升华】根据求证确定相似三角形,是解决此类题型的捷径. 举一反三: 【变式】如图,F是△ABC的AC边上一点,D为CB延长线一点,且AF=BD,连接DF, 交AB于E. 求证:.    【答案】过点F作FG∥BC,交AB于G. 则△DBE∽△FGE △AGF∽△ABC ∵, 又∵AF=BD, ∴ ∵△AGF∽△ABC ∴, 即.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服