ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:87.76KB ,
资源ID:9568913      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9568913.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(《备战2023年高考数学一轮复习》课时作业-第二章-第2节-函数的单调性与最值.docx)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《备战2023年高考数学一轮复习》课时作业-第二章-第2节-函数的单调性与最值.docx

1、 第2节 函数的单调性与最值 知识点、方法 基础巩固练 综合运用练 应用创新练 函数单调性的判定、求单调区间 1,5,9 13 16 函数的最值 2,3,7,8 12,14 函数单调性的应用 4,6,10 11 15 1.(2021·江西萍乡二模)下列函数中,在(0,+∞)上单调递增的是( C ) A.y=-x2+1 B.y=|x-1| C.y=x3 D.y=2-x 解析:函数y=-x2+1在(0,+∞)上单调递减,因此A不符合题意; 由于函数y=|x-1|的图象关于直线x=1对称,在(1,+∞)上单调递增,不符合题意; x

2、∈(0,+∞)时,函数y=x3的导数为y′=3x2>0,因此函数在(0,+∞)上单调递增,故C满足题意; 函数y=2-x=(12)x在区间(0,+∞)上单调递减.故选C. 2.函数y=2--x2+4x的值域是( C ) A.[-2,2]  B.[1,2]  C.[0,2]  D.[-2,2] 解析:由0≤-x2+4x=-(x-2)2+4≤2可知函数y=2--x2+4x的值域为[0,2].故选C. 3.函数y=2-xx+1,x∈(m,n]的最小值为0,则m的取值范围是( B ) A.(1,2) B.(-1,2) C.[1,2) D.[-1,2) 解析:函数f(x)=2-xx+1

3、3-(x+1)x+1=3x+1-1在区间(-1,+∞)上是减函数,且f(2)=0,所以n=2.根据题意,x∈(m,n]时,ymin=0. 所以m的取值范围是(-1,2).故选B. 4.已知函数f(x)=ex+x-1,若a∈(-1,0),则f(a),f(2a),f2(a)的大小关系为( D ) A.f(2a)>f(a)>f2(a) B.f(2a)>f2(a)>f(a) C.f2(a)>f(2a)>f(a) D.f2(a)>f(a)>f(2a) 解析:显然f(x)在R上是增函数,且f(0)=0,当a∈(-1,0)时,2a0,从而

4、f2(a)>f(a)>f(2a).故选D. 5.(多选题)(2021·辽宁百校联盟高考模拟)下列函数中,在(2,4)上是减函数的是( AC ) A.y=(13)x B.y=log2(x2+3x) C.y=1x-2 D.y=cos x 解析:根据指数函数的性质得y=(13)x在(2,4)上是减函数,符合题意;根据复合函数的单调性可知y=log2(x2+3x)在(2,4)上是增函数,不符合题意; 根据反比例函数的性质及函数图象的平移得y=1x-2在(2,4)上是减函数,符合题意; 根据余弦函数的性质得,y=cos x在(2,4)上先减后增,不符合题意.故选AC. 6.(2021·陕西

5、咸阳高三一模)已知函数f(x)=22x+1-1,且f(4x-1)> f(3),则实数x的取值范围是( D ) A.(2,+∞) B.(-∞,2) C.(1,+∞) D.(-∞,1) 解析:由题意知函数f(x)=22x+1-1在R上单调递减,由于f(4x-1)>f(3),所以4x-1<3,解得x<1.故选D. 7.(多选题)下列函数中,值域为[1,+∞)的是( AC ) A.f(x)=x2+1 B.f(x)=2x+1x+1 C.f(x)=x+1-2x-1 D.f(x)=x3+1 解析:f(x)=x2+1≥1,因此A符合; f(x)=2x+1x+1 =2-1x+1≠2,因此B不

6、符合; 对f(x)=x+1-2x-1,令t=2x-1≥0,x=t2+12, 所以y=t2+12+1-t=t2-2t+32=(t-1)2+22≥1,因此C符合; f(x)=x3+1∈R,因此D不符合.故选AC. 8.设函数y=ex+1ex-a的值域为A,若A⊆[0,+∞),则实数a的取值范围是    .  解析:函数y=ex+1ex-a的值域为A. 因为ex+1ex≥21ex·ex=2,所以值域为A=[2-a,+∞).又因为A⊆[0,+∞),所以2-a≥0, 即a≤2. 答案:(-∞,2] 9.若函数y=x+a-1x(a>1)在区间(0,3)上单调递减,则a的取值范围为    

7、  解析:由对勾函数的性质可知函数y=x+a-1x(a>1)在(0,a-1]上单调递减,在(a-1,+∞)上单调递增,因为函数y=x+a-1x(a>1)在区间(0,3)上单调递减,所以a-1≥3,解得a≥10. 答案:[10,+∞) 10.设函数f(x)=-x2+4x,x≤4,log2x,x>4.若函数y=f(x)在区间(a,a+1)上单调递增,则实数a的取值范围是    .  解析:作出函数f(x)的图象如图所示,由图象可知f(x)在(a,a+1)上单调递增,需满足a≥4或a+1≤2,即a≤1或a≥4. 答案:(-∞,1]∪[4,+∞) 11.已知图象开口向上的二次函数

8、f(x)对任意x∈R都满足f(3-x)= f(x),若f(x)在区间(a,2a-1)上单调递减,则实数a的取值范围为( B ) A.(-∞,54] B.(1,54] C.[-32,+∞) D.(-∞,2) 解析:由题意知函数图象的对称轴是直线x=32,且开口向上,若f(x)在区间(a,2a-1)上单调递减,则只需32≥2a-1,解得a≤54,而a<2a-1,解得a>1.所以实数a的取值范围为(1,54].故选B. 12.(多选题)若函数f(x)=1ax2-4ax+3的值域为(0,+∞),则实数a的取值可能是( CD ) A.0 B.12 C.34 D.1 解析:当a=0时,

9、f(x)=33,不符合题意; 当a≠0时,因为函数f(x)=1ax2-4ax+3的值域为(0,+∞),所以a>0,(-4a)2-4×a×3≥0,解得a≥34.故选CD. 13.(多选题)(2021·山东威海高三期中)函数f(x)对任意x,y∈R总有f(x+y)=f(x)+f(y),当x<0时,f(x)<0,f(1)=13,则下列命题中正确的是( BCD ) A.f(x)是R上的减函数 B.f(x)在[-6,6]上的最小值为-2 C.f(-x)=-f(x) D.若f(x)+f(x-3)≥-1,则实数x的取值范围为[0,+∞) 解析:取x=0,y=0,则f(0)=f(0)+f(0),

10、解得f(0)=0. 令y=-x,则f(0)=f(x)+f(-x),即-f(x)=f(-x),C正确; 令x1,x2∈R,且x1

11、1,故f(-6)=-2, 所以f(x)在[-6,6]上的最小值为-2,B正确; f(x)+f(x-3)≥-1,即f(2x-3)≥f(-3),因为函数f(x)是R上的增 函数, 所以2x-3≥-3,解得x≥0,所以实数x的取值范围为[0,+∞),D正确.故选BCD. 14.已知函数f(x)=|x2-4x|,x∈[2,5],则f(x)的最小值是    ,最大值是    .  解析:因为函数f(x)=|x2-4x| =-(x2-4x),2≤x≤4,x2-4x,4

12、已知函数f(x)=1+lnxx,则( C ) A.f(12)0⇒-ln x>0⇒01, 即函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 所以f(32)

13、1-ln 2),f(32)=23(1+ln 32)=23(1+ln 3-ln 2), 因为f(12)-f(32)=2-2ln 2-23-23ln 3+23ln 2=23(2-2ln 2-ln 3)=23(2-ln 22- ln 3)=23(2-ln 12)<0, 所以f(12)0, 所以f(x)=1-(12)x为R上的增函数,且f(x)=1-(12)x<1, 所以f(x)=1-(12)x∈(-∞,1). 答案:1-(12)x(答案不唯一)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服