ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:57.50KB ,
资源ID:9497431      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9497431.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(booth算法(乘法器).doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

booth算法(乘法器).doc

1、Booth算法笔记_verilog(布斯算法) 2009-05-03 14:02 参考程序下载:Booth_mul4_v Booth算法(布斯算法),一个比较推荐的带符号乘法算法.某天在某个群中听某个高手提起乘法运算仅用加法和移位运算来实现.所以当时有心去了解一下,可是!!,当懂哥满怀热情的在百度百科上查询时,竟然发现…也太丑陋了嘛,不晓得哪个小娃娃从哪里复制的,把人家的算法流程图复制没了就忍了,关键是能把2^0转载成20..唉误导啊误导啊,更郁闷的是人民们都喜欢复制并且不加以细看…于是乎百度出来别人空间里写的booth算法都和百科里面雷同啊.So,懂哥才决定讨论哈这个.踏破铁鞋无觅处.

2、竟然在某三级微机原理的辅导里面无意中发现了类似的介绍.废话不说了,懂哥就把这次的笔记整理好.(又,为了帮助被百科误导的小朋友们,懂哥这次用verilog描述的booth硬件实现并不是一个标准的乘法器,而仅仅是比较明确地展现步骤得出结果,并设置的寄存器名和百度百科里寄存器名设为相同.) [具体步骤和举例请参考程序后面的分析] (基于"改良"Booth算法的4位乘法器笔记见: 先补充一下这次写这个又巩固了的= =|| 无符号数->逻辑移位 有符号数->算术移位 寄存器类型的值可取负数,但若该变量用于表达式运算中,则按无符号类型处理. 而booth算法里面的移位则是算术移位

3、 Booth算法和一般按照普通乘法运算在于算部分积那一块.Booth算法的乘法器仅仅是对乘数的位重新编码以减少乘法运算周期所需要的加法运算次数.且用补码形式表示正数和负数,所以不像一般讨论的那样要讨论负数运算.所以,Booth算法实现的乘法可以直接用于两个补码数相乘.(关键在于booth跳过了乘数中全部是1的字符串,将一系列加法运算用一次加法或减法代替) Booth编码方法(引用百科) 设y=y0,yly2…yn为被乘数,x为乘数,yi是a中的第i位(当前位).操作的方式取决于表达式(yi+1-yi)的值,这个表达式的值所代表的操作为:   0 无操作   +1 加x   

4、1 减x 流程图(额,补充百科里缺少的算法流程图) 给出懂哥的verilog描述的booth算法硬件实现. 确实写得丑陋啊…还生硬的加了一个ns.由此联想到用状态机来描述4位乘法可能更好. 并且遇到过的问题就是变量不能在多个always里赋值,并且加深了多次赋值可能导致的冲突理解 module mul_4(                                        clk,                                        res_n,                                 

5、       mul1,                                        mul2,                                        result); parameter width=4'd4; input clk,res_n; input [width-1:0]mul2,mul1;//乘数 output [2*width-1:0]result;//运算结果最多是两倍乘数位数 wire [2*width-1:0]result; reg [width-1:0] R0,R1,R2;//result={R0,

6、R1},multiplier=R2 reg P; reg ns; assign result={R0,R1}; always@(posedge clk or negedge res_n) begin      if(!res_n)      begin        R0<=0;        R1<=mul1;        R2<=mul2;        P<=1'b0;        ns<=0;      end      else      begin          if(!ns)          beg

7、in          case({R1[0],P})              2'b01:              begin              R0<=(R0+R2);ns<=1;              end              2'b10:              begin              R0<=(R0-R2);ns<=1;              end              default:              {R0,R1,P}<={R0[width-1],R0,R1};      

8、    endcase            end          else          begin              {R0,R1,P}<={R0[width-1],R0,R1};              ns<=0;          end      end end endmodule 然后就是testbench `timescale 1ns/1ns module t_mul_4; parameter width=4'd4; reg clk,res_n; reg[width-1:0]mul1,mul2;

9、 wire[2*width-1:0]result; mul_4 t(clk,res_n,mul1,mul2,result); initial begin      clk=0;      res_n=1'b1;      mul1=4'b0111;      mul2=4'b1101;      #5 res_n=0;      #5 res_n=1'b1;      #80 $stop; end always #5 clk=~clk; endmodule 设置两个乘数分别是4’b0111(4’d7),4’b1101(-4’d3)

10、仿真波形如图 看着波形就更好分析和理解整个过程了(R2=1101) R0             R1         P 0000         0111         0     初始 0011         0111         1     R0<=R0-R2 0001         1011         1     右移(第一次循环) 0000         1101         1     右移(第二次循环) 0000         0110         1     右移(第三次循环) 1101         0110

11、         1     R0<=R0+R2 1110         1011         1     右移(第四次循环) 嗯,暂时要记的就是这么多. 废话:这么久没有做笔记是因为在为期中做准备.考完期中解决了雪崩堆积的作业…然后反思…因为考得悲剧的期中信号,感觉到也许….应该再改进一下…. 嗯,学习是不止步的,这样的意义并不是单纯的取得,也是一种发展的过程.有人说学了万一没有用呢?懂哥说,不是这样的,对于懂哥来说,只是懂哥大学生活的乐趣定义和别的同学不一样吧,也许他们觉得是大家聚餐或者看小说,可是对懂哥来说,聚餐会让懂哥拉肚子,看小说让懂哥头疼一样,懂哥的乐趣就在这样的探求中,有什么值得怀疑的呢?为什么就不能理解懂哥也只是一个贪玩的同学,只是懂哥定义的”玩”不一样呢?为什么要非议呢?... 没有关系的.继续下去…

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服