ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:1.10MB ,
资源ID:948451      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/948451.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(数字图像处理课程设计——人脸检测与识别.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数字图像处理课程设计——人脸检测与识别.doc

1、数字图像处理 课 程 设 计 人脸检测与识别课程设计 一、 简介 人脸检测与识别是当前模式识别领域的一个前沿课题,人脸识别技术就是利用计算机技术,根据数据库的人脸图像,分析提取出有效的识别信息,用来“辨认”身份的技术。人脸识别是模式识别研究的一个热点, 它在身份鉴别、信用卡识别, 护照的核对及监控系统等方面有着广泛的应用。人脸图像由于受光照、表情以及姿态等因素的影响, 使得同一个人的脸像矩阵差异也比较大。因此, 进行人脸识别时, 所选取的特征必须对上述因素具备一定的稳定性和不变性. 主元分析(PC

2、A)方法是一种有效的特征提取方法,将人脸图像表示成一个列向量, 经过PCA 变换后, 不仅可以有效地降低其维数, 同时又能保留所需要的识别信息, 这些信息对光照、表情以及姿态具有一定的不敏感性. 在获得有效的特征向量后, 关键问题是设计具有良好分类能力和鲁棒性的分类器. 支持向量机(SVM ) 模式识别方法,兼顾训练误差和泛化能力, 在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。  本此课程设计基于MATLAB,将检测与识别分开进行。其中检测部分使用实验指导书上的肤色模型算法进行,不进行赘述。识别部分采用PCA算法对检测出的人脸图像进行特征提取, 再利用最邻近距离分类法对特征

3、向量进行分类识别,将在后文具体表述。仿真结果验证了本算法是有效的。 二、 人脸检测 1. 源码 img=imread('D:\std_test_images\face3.jpg'); figure; imshow(img); R=img(:,:,1); G=img(:,:,2); B=img(:,:,3); faceRgn1=(R>95)&(G>40)&(B>20)&max(img,[],3)-min(img,[],3)>15&abs(R-G)>15&R>B; figure; imshow(faceRgn1); r=double(R)./double(sum(img

4、3)); g=double(G)./double(sum(img,3)); Y=0.3*R+0.59*G+0.11*B; faceRgn2=(r>0.333)&(r<0.664)&(g>0.246)&(g<0.398)&(r>g)&g>=0.5-0.5*r; figure; imshow(faceRgn2); Q=faceRgn1.*faceRgn2; P=bwlabel(Q,8); BB=regionprops(P,'Boundingbox'); BB1=struct2cell(BB); BB2=cell2mat(BB1); figure; imshow(img);

5、 [s1 s2]=size(BB2); mx=0; for k=3:4:s2-1 p=BB2(1,k)*BB2(1,k+1); if p>mx&(BB2(1,k)/BB2(1,k+1))<1.8 mx=p; j=k; hold on; rectangle('position',[BB2(1,j-2),BB2(1,j-1),BB2(1,j),BB2(1,j+1)],'linewidth',3,'edgecolor','r'); hold off; end end 2.处理

6、过程 三、 人脸识别 1. 算法简述 在Matlab 2012a版本中添加了对PCA算法的支持,由于水平有限我选择直接调用。在本次课程设计中,PCA算法又分为样本训练和人脸识别两个过程,在样本训练阶段,将样本库(每组15张共15组人脸图像,对每组前11张进行特征提取用于训练,后4张用于检测)中的人脸图像转换为特征向量表示,并投影到PCA子空间,最终将这些向量数据保存到训练数据库中。而在识别阶段,同样将待识别的人脸图像使用PCA子空间的向量表示,通过计算待识别图像的向量与样本中的向量之间的距离,寻找其中最相近的人脸图像,作

7、为识别结果。 2. 源码 clear clc % 样本数量15*11 people_count=15; face_count_per_people=11; % 训练比率,设置为75%识别正确率可达100% training_ratio=.75; % 能量 energy=90; training_count=floor(face_count_per_people*training_ratio); training_samples=[]; path_mask='D:\\pca_face_rec\\%03d\\%02d.jpg'; % 训练 for i=1:p

8、eople_count for j=1:training_count img=im2double(imread(sprintf(path_mask,i,j))); img=imresize(img,[10 10]); % 归一化至50*50 if ndims(img)==3 img=rgb2gray(img); end training_samples=[training_samples;img(:)']; end end mu=mean(training

9、samples); [coeff,scores,~,~,explained]=pca(training_samples); idx=find(cumsum(explained)>energy,1); coeff=coeff(:,1:idx); scores=scores(:,1:idx); % 测试 acc_count=0; for i=1:people_count for j=training_count+1:face_count_per_people img=im2double(imread(sprintf(path_mask,i,j)))

10、 img=imresize(img,[10 10]); if ndims(img)==3 img=rgb2gray(img); end score=(img(:)'-mu)/coeff'; [~,idx]=min(sum((scores-repmat(score,size(scores,1),1)).^2,2)); if ceil(idx/training_count)==i acc_count=acc_count+1;

11、 end end end test_count=(people_count*(face_count_per_people-training_count)); acc_ratio=acc_count/test_count; fprintf('测试样本数量:%d,正确识别率:%2.2f%%',test_count,acc_ratio*100) 3. 仿真结果及说明 样本库举例: 结果为:测试样本数量:45,正确识别率:100.00% 四、 总结 人脸识别是一个多学科领域的挑战性难题,近30年来人脸识别的研究虽然取得了巨大的进步,但与人类的感知能力相距甚远。人脸识别还涉及到很多理论和技术问题,这一技术的不断进步还需要研究者们的不断创新和努力。本次课程设计让我对人脸识别算法有了初步的认识,了解到了PCA算法,K-L变换及特征向量的提取,最近邻分类器等人脸识别所需要的知识,为我的进一步学习指明了方向。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服