ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:18.51KB ,
资源ID:9462099      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9462099.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(余角与补角贾宪三角.docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

余角与补角贾宪三角.docx

1、余角与补角教学设计 [教学目标] 1、在具体情境中认识余角和补角的概念,并会运用解题; 2、经历观察、操作、探究、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和有条理的表达能力; 3、体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的信心。 [教学重点与难点] 1、教学重点:互为余角、互为补角的概念; 2、教学难点:应用方程的思想解决有关余角和补角的问题 [教学准备] 多媒体课件、纸板、三角尺 [教学过程] 一、情境引入 1、带领同学们领略意大利的比萨斜塔的壮观景象,并思考:斜塔与地面所成的角度和它与竖直方向所成的角度相加为多少度?(课件演

2、示) 2、(动手操作1)拿出一个直角纸板,将直角剪成两个角, ∠1和∠2,问:∠1和∠2的和为多少度呢? ∠1+∠2=90o,我们把具有这种关系的∠1、∠2称为互余, 其中∠1叫做∠2的余角,∠2叫做∠1的余角。 请同学们根据老师的演示试着说出余角的定义。 (设计意图:通过比萨斜塔的现实情境和剪纸这一实际操作引出余角概念,既调起学生的兴趣,又直观易懂。) 二、新知探究 1、    余角的定义:如果两个角的和为90o(直角),我们就称这两个角互为余角,简称互余。 2、(动手操作2) (1) 拿出和的两个角的纸板拼成一个直角,问:“这两个角互余吗?” 把其中一个角移开,“这两个角

3、还互余吗?” 注意事项1:两角互余只与度数有关,与位置无关。 继续提问:直角三角板的和的两个角互为余角吗?老师在前面黑板上画一个的角,班长在后面黑板上画一个的角,这两个角互为余角吗? (2)    拿出一个直角纸板,将其剪成三个角,分别标上∠1、∠2、∠3,问: “∠1、∠2、∠3是互为余角吗?为什么?” 注意事项2:互余是两角间的关系。 (设计意图:余角的两个注意事项,通过举例、现场操作,让学生说出错误观点,然后以纠错的方法得出,让学生的印象更为深刻。) 3、补角的定义:如果两个角的和为(平角),我们就称这两个角互为补角,简称互补。 4、游戏一:找朋友 环节一:老师把事先准备的标有度

4、数的角的卡片发给一些同学,并介绍了游戏规则:当老师拿出一张卡片,说要找余角(补角)朋友时,拿到它的余角(补角)的同学请立刻起立,并说:“我是一个____度的角,我是你的余角(补角)朋友!” 环节二:将班级同学分成左右两个大组,参与的同学可以向另外一组的同学提出考验:“_____度的余(补)角是多少度?”另一组的同学要立刻回答,比一比,看一看哪个小组答得又快又正确!     (设计意图:通过轻松愉快的游戏过程拉近师生之间的距离,并让学生学会熟练地求解一个角的余角和补角。) 三、例题精讲 已知:如图,点O为直线AB上一点,∠COB=,求: (1)图中互余的角是__________与________

5、 (2)图中互补的角是_______与_______;_______与________. (3)图中相等的角是________与_________。 若一个角的补角等于它的余角的4倍,求这个角的度数。 分析:若设这个角是,则它的补角是(),余角是(),再依据题设中的等量关系“补角=4余角”,便可列出方程求解。 解:设这个角是,则根据题意得:        解得: 答:这个角的度数是。 点评:解决这类问题的关键是找出问题中的等量关系,运用方程的观点列方程求解。 【变式】一个角的补角是它的3倍,这个角是多少度? 四、能力拓展 (小组探究) 思考:小明在计算角的补角比它的余角大多少

6、时,由于粗心大意,将看成来计算,这对计算结果有影响吗?为什么?           (提示)1、算一算:的补角比余角大______度; 的补角比余角大_______度;       所以,这对计算结果_________影响。 3、 思考:如果小明把看成来计算,对计算结果有影响吗? 4、再思考:一般地,的补角比它的余角大_______度,你能证明吗? 【牛刀小试】: 1、已知一个角的余角为,则这个角的补角为___________;        2、已知一个角的补角为,则这个角的余角为__________; 3、已知一个角的余角与它的补角的和为,则这个角的余角是多少度? (设计意图:本

7、探究及其3道配套练习题主要目的是拓展学生思维,让学生在合作交流中完成由特殊到一般的探究和演绎推理。) 五、收获广谈 这节课我学会了…… 六、课后作业 (设计意图:本节课的课后作业分为复习巩固、综合运用和拓广探索三组分层练习,目的在于使每个学生都得到最佳巩固发展。) §4.3.3余角和补角课后作业 (要求:全班同学做到第8题,学有余力的同学争取做到第10题。) 一、复习巩固: 1、 已知,则的余角为_______,的补角为_________; 2、 已知∠A=62°23′,则∠A的余角为_______,∠A的补角为________; 3、 若∠1=,则∠1的余角为________

8、补角为_____________。 4、 若一个角的余角为,则它的补角大小为_________; 5、 若一个角比它的余角大,则这个角为________度。 二、综合运用: 6、如图,点O在直线上,∠1与∠2互余,,则的度数是(   ) A、     B、    C、    D、    7、若互为补角的两个角度数比为3:2,则这两个角是(    )    A、      B、    C、    D、    8、已知一个角的补角与这个角的余角的和等于,求这个角的度数。 三、拓广探索: 9、如图,已知∠COD与∠DOA互余,且∠COD比∠DOA大,OB是∠AOC的平分线,求∠BOD的度数。 10、(1)如图(a)所示,∠AOB、∠COD都是直角,试猜想∠AOD与∠COB在数量上存在相等、互余还是互补关系?你能用说理的方法说明你的猜想的正确性吗? (2)当∠COD绕着O不停地旋转(比如旋转到图(b)的位置),你原来的猜想还成立吗?

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服