ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:1.23MB ,
资源ID:9460746      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9460746.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(活塞连杆机构的外文及翻译.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

活塞连杆机构的外文及翻译.doc

1、Modeling and Simulation of the Dynamics of Crankshaft- Connecting Rod-Piston-Cylinder Mechanism and a Universal Joint Using The Bond Graph Approach Abstract This paper deals with modeling and simulation of the dynamics of two commonly used mechanisms, (1) the Crankshaft – Connecting rod – Piston

2、– Cylinder system,and (2)the Universal Joint system, using the Bond Graph Approach. This alternative method of for mulation of system dynamics, using Bond Graphs, offers a rich set of features that include, pictorial representation of the dynamics of translation and rotation for each link of the mec

3、hanism in the inertial frame, representation and handling of constraints at joints, depiction of causality,obtaining dynamic reaction forces and moments at various locations in the mechanism, algorithmic derivation of system equations in the first order state-space or cause and effect form, coding f

4、or simulation directly from the Bond Graph without deriving system equations,and so on. Keywords: Bond Graph, Modeling, Simulation, Mechanisms. 1 Modeling Dynamics of two commonly used mechanisms, (1) the Crankshaft – Connecting rod – Piston – Cylinder system,and (2) the Universal Joint system,

5、are modeled and simulated using the Bond Graph Approach. This alternative method of formulation of system dynamics, using Bond Graphs, offers a rich set of features [1, 2]. These include, pictorial representation of the dynamics of translation and rotation for each link of the mechanism in the inert

6、ial frame, depiction of cause and effect relationship,representation and handling of constraints at joints, obtaining the dynamic reaction forces and moments at various locations in the mechanism, derivation of system equations in the first order state-space or cause and effect form, coding for simu

7、lation directly from the Bond Graph without deriving system equations.Usually the links of mechanisms are modeled as rigid bodies. In this work, we develop and apply a multibond graph model representing both translation and rotation of a rigid body for each link. The links are then coupled at j

8、oints based on the nature of constraint [3-5]. Both translational and rotational couplings for joints are developed and integrated with the dynamics of the connecting links. A problem of differential causality at link joints arises while modeling. This is rectified using additional stiffness and dam

9、ping elements. It makes the model more realistic, bringing in effects of compliance and dissipation at joints, within definable tolerance limits.Multibond Graph models for the Crankshaft – Connecting rod – Piston – Cylinder system, and, the Universal Joint system [6], are developed using the BondGra

10、ph Approach. Reference frames are fixed on each rigid link of the mechanisms using the Denavit-Hartenberg convention [7]. The translational effect is concentrated at the center of mass for each rigid link.Rotational effect is considered in the inertial frame itself,by considering the inertia tensor

11、for each link about its respective center of mass, and expressed in the inertial frame. The multibond graph is then causaled and coding in MATLAB, for simulation, is carried out directly from the Bond Graph. A sketch of the crankshaft mechanism is shown in Fig.1, and its multibond graph model is sh

12、own in Fig.2. A sketch of the Universal joint system is shown in Fig.3, and its multibond graph model is shown in Fig.4. Results obtained from simulation of the dynamics of these mechanisms are then presented. 1.1 Crankshaft - Connecting Rod - Piston-Cylinder Mechanism Fig. 1 shows the sketch of

13、 the “Crankshaft – Connecting rod – Piston – Cylinder system.” Fig. 1: Crankshaft-Connecting Rod-Piston-Cylinder Mechanism. The individual components are considered as rigid links,connected at joints. The first moving link is the crank,the second link is the connecting rod and the third link is

14、the piston. A frame is fixed on each link. Thus frame 1 is fixed on link 1, frame 2 on link 2, and frame 3 on link 3. A fixed inertial frame 0, whose origin coincides with frame 1, is chosen. However, it will neither rotate nor translate. C1, C2 and C3 are centres of mass of respective links. The fr

15、ames are fixed on respective links using the Denavit-Hartenberg convention [4]. Dynamics of the system of Fig. 1 is modeled in the multibond graph shown in Fig. 2. The model depicts rotation as well as translation for each link in the system. The left side of the bond graph shows the rotational

16、part and right part shows the translational part. We restrict any motion between the origin of inertial frame O and point on the link 1 that is O1 by applying source of flow Sf as zero. Similarly we restrict any relative motion at point A, distinguished by A1 on link 1 and A2 on link 2, by applying

17、source of flow Sf as zero. The piston which is link 3, is constrained to translate only along the X0 direction. Translation along Y0 and Z0 direction is constrained by applying source of flow Sf as zero for these components. Differential causality is eliminated by making the K(1,1) element of the st

18、iffness matrix [K] between link 2 and link 3 as zero. Additional stiffness and damping elements used for eliminating differential causality make the model more realistic, bringing in effects of compliance and dissipation at joints, within definable tolerance limits. These viscoelastic elements a

19、re represented in the bond graph by using C and R elements. We have a source of effort Se at link 3, which is the pressure force acting on the piston, although this force is also acting only in X direction. Fig. 2: Multibond graph model for the Crankshaft – Connecting rod – Piston – Cylinder

20、system of Fig. 1. 1.2 Universal Joint Mechanism The Fig. 3 shows the sketch of the “ Universal Joint” mechanism. Fig. 3: Universal Joint Mechanism. It has three rigid links, two are yokes which are attached to rotating shafts and the middle one is the cross connecting the two yokes. The iner

21、tial frame is numbered 0,and it is fixed. Frame 1 is on link 1, frame 2 on the cross which is link 2, and frame 3 on the right yoke which is link 3. Origin of the inertial frame coincides with that of frame 1 of link 1. The links 1 and 2 are connected with each other at two coincident end points poi

22、nts A - A1 on link 1 and A2 on link 2, and B - B1 on link 1 and B2 on link 2. Similarly links 2 and 3 are connected at two points D - D2 on link 2 and D3 on link 3, and E - E2 on link 2 and E3 on link 3. Link 1 rotates about Z axis with respect to the inertial frame. The frame 2 is located at th

23、e centre of mass of the link 2. Link 2 rotates with respect to the link 1 in direction Z2 as shown in Fig. 3. Frame 3 also coincides with frame 2 but it is located on the link 2. The frame 3 on link 3 rotates with respect to the link 2, about Z3, as shown in Fig. 3. The bond graph for this system is

24、 shown in Fig. 4. Fig. 4: Multibond graph for the Universal Joint system of Fig. The issue of differential causality arises for this mechanism also. It is eliminated using additional stiffness and damping elements. As discussed earlier, this makes the model more realistic, bringing in effects of

25、 compliance and dissipation at joints, within definable tolerance limits. The relative motion between the links at joints, along certain directions, is restrained by applying the source of flow Sf as zero. The constraint relaxation is tuned by changing the values of stiffness and damping at correspo

26、nding joints. Here we restrict the motion of the link 3 in two directions Y and Z, and allow motion in X direction by resolving the source of flow in three parts and by putting Sf as zero in Y and Z directions only. For the simulation, an excitation torque is applied to link 1 about the Z direction

27、 2 Simulation The results of computer simulation for the crankshaft mechanism of Fig. 1 are discussed first. The initial position of the crankshaft is at 1 θ = 60o with the X0 axis. It is then released under the effect of gravity. The force of gravity also acts on the connecting rod. No force due t

28、o gas pressure is considered for the simulation as it is not the main issue under focus for this paper. The upper row in Fig. 5 shows the displacement of the centre of mass C1, as observed and expressed in Frame 0. It moves in a circular arc about the Z0 axis. The first figure in the lower row of Fi

29、g. 5 shows the oscillation of the crankshaft about the Z0 axis through change in orientation of the unit vectors of Frame 1. The second figure in the second row shows the oscillation of the centre of mass C1 with time. This could perhaps be ascribed to the nonlinearity imposed due to coupling with

30、the connecting rod. Simulation results for the Universal joint system are presented in Fig. 8. A constant torque is applied to the driving shaft about its axis. The driven shaft makes an angle of 5° with the axis of the driving shaft. The First row shows the response of the driving shaft which i

31、s the first link. The component of angular momentum of the driving shaft about its axis increases linearly, which is as expected. The first two figures of the second row show the change in orientation of the cross, which is link 2. Angular motion about all three axes is clearly visible. The driven

32、shaft follows the motion of the driver shaft as is clear from the third row in Fig. 8. 3 Conclusions The Bond Graph approach is used to model dynamics of two commonly used mechanisms, (1) the Crankshaft – Connecting rod – Piston – Cylinder system, and (2) the Universal Joint system. Pictorial

33、representation of the dynamics of translation and rotation for each link of the mechanism in the inertial frame, representation and handling of constraints at joints, depiction of cause and effect relationships, coding for simulation directly from the Bond Graph without deriving system equations, ha

34、ve been explained in this work. MATLAB based simulations have been presented and interpreted for both the systems. 曲轴连杆活塞机构及使用键合图法的万向联轴器的 动力学仿真建模 摘要 本文论述了与常用的两种机制的动力学仿真模型,(1)曲轴连杆活塞–缸系统,及(2)万向接头系统,使用的键合图方法。这种替代方法的系统动力学仿真,采用键合图,提供了丰富的功能集,包括,对惯性系

35、的机构的各个环节的平移与旋转的动态图形表示,表示与约束节点处理,描述的因果关系,在不同的位置获取动态反应的机理力与力矩,算法的系统方程的推导在第一阶状态空间或因果形式编码进行了仿真,直接从键合图没有导出系统方程,等等。 关键词:键合图,建模,仿真,机制。 1 建模 常用的两种机制的动态,(1)曲轴连杆活塞–––缸系统,及(2)万向接头系统,进行了建模与模拟使用的键合图方法。这个系统的动力学方程的替代方法,采用键合图,提供了丰富的功能集[ 1,2 ]。这些措施包括,对惯性系的机构的各个环节的平移与旋转的动态图形表示,因果关系,描述表示与约束缝隙处理,在不同的位置获取机制动态反应力与

36、力矩,系统方程的推导在第一阶段状态对空间或原因形式及影响编码进行了仿真,没有直接从键合图导出系统方程。通常机制的链接被建模为刚性体。 在这项工作中,我们开发与应用一个多元图模型的每一个环节都要翻译与刚体的转动。环节进行耦合基于约束[3-5]自然关节。平移与旋转接头的开发与集成的动态连接。在建模的时候连接接头是一个问题。这能纠正使用附加的刚度与阻尼元件。它使模型更逼真,使合规与耗散在关节的影响,定义在公差范围内。多元图模型的曲轴连杆活塞–––缸系统,与万向接头系统[ 6 ],采用键合图方法。每一刚性连接的机制参考框架固定在采用Denavit-Hartenberg公约[ 7 ]。翻译的影

37、响主要集中在质量中心的每个刚性连接。旋转效应是惯性框架本身考虑,通过考虑每个环节对各自质心惯性张量,并在惯性坐标系的表达。然后使 多元图的编码在MATLAB中,仿真,进行直接从键合图。一种曲轴机构示意图如图所示,其多元图模型如图2所示。一种万向接头系统示意图如图3所示,其多元图模型如图4所示。从这些机制的动力学仿真得到的结果。 1.1曲轴-连杆-活塞缸机构 图1显示了“曲轴连杆活塞–––缸系统示意。” 单个组件被视为刚性连接,连接的接头。第一个移动连接曲柄,第二连杆是连杆、第三连杆是活塞。一架固定在每一个环节。因此,框架1固定链接1,框架2与框架3上连接2,连接3。一个固定的

38、惯性坐标系0,其起源与1帧被选择。然而,它既不旋转也没有翻译。C1,C2与C3是各环节质量中心。该框架固定在各自的链接采用Denavit-Hartenberg公约[ 4 ]。 图1的系统动力学是在图2所示的多元图模型。该模型描述了旋转以及在系统中的每个环节的翻译。键合图的左边显示的转动部分与右侧部分显示平移部分。我们限制任何运动的惯性帧O点起源之间的链路上的流量是1,O1 SF应用源为零。同样,我们限制在任何点的相对运动,由A1与A2链接1链接2,通过流量SF应用源为零。活塞是链接3,是约束沿X0方向。这些组件沿Y0与Z0方向翻译是受流SF应用源为零。微分因果关系是使K消除(1,1)

39、的刚度矩阵[k]之间的联系2与链接3元为零。 附加的刚度与阻尼元件用于消除微分因果关系,使模型更逼真,使合规与耗散在关节的影响,定义的公差范围内。这些粘弹性元件中的键合图用C与R元素。 我们有一个硒在链接3源,这是作用在活塞的压力,尽管这力量也只有在x方向。 图2:为曲轴连杆活塞–––缸液压系统图1多元图模型。 1.2万向节机构 图3显示了素描的“万向节”机制。 它有三个刚性连接,两个线圈被连接到两个轭,旋转轴与中间一个是交叉连接。惯性帧编号为0,它是固定的。1帧是1帧2连接,在十字架上,连接2与3帧,右边的轭是链接3。惯性坐标系的原点重合的链接1 1机架。

40、链接1与2在两个重合点相互连接的链接1与A2链接2 - A1点,与B - B1与B2链接1链接2。同样的联系2与3连接在两个点D - D2与D3链接2链接3,与E - E2与E3链接2链接3。 链接1绕Z轴相对于惯性帧。框架2位于2链路质量中心。链接2相对于方向Z2,如图3所示的链接1转动。3帧也恰逢框架2但它位于链接2。框架3连杆3相对于链接2,关于Z3转动,如图3所示。这个系统的键合图如图4所示。。 图4:为万向节多元图系统图 该机构还有微分因果关系出现的问题。它是使用额外的刚度与阻尼元件消除。如前面所讨论的,这使模型更逼真,使合规与耗散在关节的影响,定义在公差范围内。在节点的链

41、接之间的相对运动,沿着一定的方向,运用流SF源为零的约束。约束松弛是通过改变刚度值与相应的关节阻尼调整。在这里,我们限制的链接3在两个方向上运动的Y与Z,并允许通过解决三个部分流源在x方向的运动,将SF为零,Y与Z方向。对于仿真,励磁转矩施加链接1关于Z方向 2模拟 首先对图1的曲轴机构的计算机仿真结果进行了讨论。曲轴的初始位置是在1θ= 60o与X0轴。然后,在重力的作用下释放。重力也作用于连杆。由于气体压力没有力考虑为仿真不是主要问题,本文的焦点。观察图5中的上行显示的质量中心位移C1在0帧的表达。它移动到Z0轴圆弧。在图5的下行的第一个图显示了曲轴的振动通过对1帧的单位矢量方向变化。

42、在第二排第二个数字表明C1中心随时间振荡。这也许可以归因于非线性造成的耦合与连杆。 为万向接头系统的仿真结果如表8所示。恒转矩被施加到驱动轴的轴。使驱动轴与驱动轴的轴线成 5° 角度。第一行显示驱动轴的第一环节的响应。角动量的驱动轴的轴线呈线性增加的成分,这是预料之中的。第二行的前两个数字显示的横方向的变化,这是链接2。所有三个轴的角运动是清晰可见的。驱动轴的驱动轴的运动:从图8中的第三行是明确的。 3结论 键合图的方法是使用两个常用机构动力学模型,(1)曲轴连杆活塞–––缸系统,及(2)万向接头系统。对惯性系的机构各环节的平移与旋转的动态图形表示,表示与约束节点处理,因果关系的描述编码进行了仿真,直接从键合图没有导出系统方程,一直在这工作了。基于MATLAB的仿真结果进行介绍与解释的系统。 出处: http://www.nacomm09.ammindia.org/NaCoMM-2009/nacomm09_final_pap/DVAM/DVAMAV3 .pdf

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服