ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:105KB ,
资源ID:9460665      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9460665.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(用频率估计概率教案设计.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

用频率估计概率教案设计.doc

1、 《概率初步》7 第三节用频率估计概率导学案 主编人: 主审人: 班级: 学号: 姓名: 学习目标: 【知识与技能】 学会根据问题的特点,用统计概率来估计事件发生的概率,培养分析问题、解决问题的能力 【过程与方法】 通过对问题过程的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法 【情感、态度与价值观】 通过研究如何用统计概率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值 【重点】 通过对事件发生的频率的分析来估计事件发生的概率 【难点】 大量重复试验得到频率稳定值

2、的分析和事件的模拟试验 学习过程: 一、自主学习 (一)复习巩固 1、古典概率条件是什么?用什么方法求? 2、用列举法求概率有哪几种? (二)自主探究 思考:当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时.又该如何求事件发生的概率呢?如:1)某射击运动员射击一次,命中靶心的概率是__ 2)掷一次骰子,向上的一面数字是6的概率是____. 1、历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示 抛掷次数(n) 2048 4040 12000 30000 24000 正面朝上数(m) 1061 2048 6019 14

3、984 12012 频率(m/n) 实验结论: 当抛硬币的次数很多时,出现下面的频率值是稳定的,接近于常数 ,在它附近摆动. 2、某林业部门要考察某种幼树在一定条件的移植成活率,就采用什么具体做法? 某林业部门要考查某种幼树在一定条件的移植成活率. (1)它能够用列举法求出吗?为什么? (2)它应用什么方法求出? (3)请完成下表,并求出移植成活率. 移植总数(n) 成活数(m) 成活的频率() 10 8 0.80 50 47 ____

4、 270 235 0.871 400 369 ____ 750 662 ____ 1500 1335 0.890 3500 3203 0.915 7000 6335 _____ 900 8073 _____ 14000 12628 0.902 由上表可以发现,幼树移植成活的频率在____左右摆动,

5、并且随着移植棵数越来越大,这种规律愈加明显. 所以估计幼树移植成活的概率为_____. (三)、归纳总结: 1、一般地,在大量重复试验中,如果事件A发生的频率 稳定于某个常数p,那么事件A发生概率的概率 : P(A)= p 通常我们用频率估计出来的概率要比频率保留的数位要少。 (四)自我尝试: 1、一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼_______尾,鲢鱼_______尾. 2、动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30

6、岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少? 二、教师点拔 弄清了一种关系------频率与概率的关系 当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率. 了解了一种方法-------用多次试验频率去估计概率 体会了一种思想:用样本去估计总体 用频率去估计概率 三、课堂检测 1.在做布斗的投针实验时,若改变平行线间的距离与针的长度的比值,则( ) A.针与平行线相交的概率不变 B

7、.针与平行线相交的概率会改变 C.针与平行线相交的概率可能会改变; D.以上说法都不对 2.当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,求(估计)概率是用( ). A.通过统计频率估计概率 B.用列举法求概率 C.用列表法求概率 D.用树形图法求概率 3.布斗投针实验的概率是________________________. 4.事件发生的概率随着_________的增加,逐渐_________在某个数值附近,我们可以用平稳时________来估计这一事情的概率. 四、课外训练 1、某水

8、果公司以2元/千克的成本新进了10000千克的柑橘,如果公司希望这种柑橘能够获得利润5000元,那么在出售柑橘(已经去掉损坏的柑橘)时,每千克大约定价为多少元比较合适? 销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏表”统计,并把获得的数据记录在下表中,请你帮忙完成下表. 柑橘总质量()/千克 损坏柑橘质量()/千克 柑橘损坏的频率() 50 5.50 0.110 100 10.50 0.105 150 15.50 _____

9、 200 19.42 _____ 250 24.25 _____ 300 30.93 _____ 350 35.32 _____ 400 39.24 _____ 450 44.57 _____ 500 51.54 _____ 2、.一个学习小组有6名男生3名女生,老师要从小组的学生中

10、先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取,你能设计一种试验来估计“被抽取的3人中有2名男生1名女生”的概率吗? 教学反思:这堂课一开始,我就通过借助知识局限性来设置“激趣设疑” 教学环节,先是提问学生“用列举法求概率的条件是什么?”学生回答说:“试验的可能结果是有限个,或各种结果发生的可能性均等的随机事件”,接着来个假设:“如何当试验的可能结果不是有限个,或各种结果发生的可能性不相等这样随机事件还能用列举法求概率吗?”多数学生都说:“不行!”,紧接着追问:“不行!还能什么方法来求概率呢?想不想知道?”学生说:“想!”这时老师来个“顺水推舟”接着说:“那么本节课就为解

11、决这个问题来安排的”。   接下来安排学生进行“自学质疑”教学环节,让学生先看书,看能否从书找出答案,下一步要解决问题是让学生理解用频率估计概率的可行性和必要性。我是这样来设计:先问学生掷一枚硬币正面向上的概率是多少,刻意让学生现场展示掷硬币游戏,目的是让学生通过实验发现正面向上的频率稳定在0.5附近,深刻领悟到:当试验次数足够大时,频率稳定于概率,从而理解用频率估计概率的可行性。至于用频率估计概率的必要性,我通过给学生举出抛图钉的实例,在这个实验中,正面向上和反面向上的可能性不相等;再比如想知道班上投篮技术最好同学罚球的命中率,因为实验中出现的结果不是有限个,所以也无法用列举法求概率。通过这两个例子,帮助学生理解到学习用频率估计概率的必要性。   通过对这节课的前面两个教学环节设计进行反思,我想到作为资深教师一方面应当好擅长激发学生学习兴趣,因为“兴趣是最好老师”,所以要善于捕捉教材、学生信息,进行有效组合,创设出有效问题情境来吸引学生注意力,唤起学生好奇心,进而产生强烈的求知欲。另一方面数学重在于培养学生逻辑思维,所以老师对数学知识的讲解逻辑性一定要强,从知识生成角度出发,本着尊重学生的认知规律性,尽可能让学生经历知识再发现再生成过程,让其真正获取“自己知识”。 12999数学网

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服