ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:319KB ,
资源ID:9458751      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9458751.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(Pspice仿真常用变压器模型.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

Pspice仿真常用变压器模型.doc

1、Pspice仿真——常用变压器模型 时间:2012-04-12 2176次阅读 【网友评论0条 我要评论】 收藏 因为电感元件的参数比较单一,而且在仿真中,主要是仿真元件的电子特性。所以,这里就不谈电感,而主要讨论一下变压器和耦合电感的问题。不少朋友在使用pspice仿真的时候,只会使用元件库中的几个理想化的耦合电感和变压器模型,却不会用那种带磁芯参数的耦合电感和变压器。下面让我们画一张原理图,把常用的理想化的和非理想话的耦合电感及变压器包含进去,进行一个仿真比较,这样才能掌握模型的特点,从而在实际工作中运用。 在这张原理图中,我们一共放置了5个耦合电感和变压器模型。其中左边的

2、2个是理想化的,右边三个是非理想化,模拟的是带着实际的磁芯的磁性元件,磁芯的规格是3C90材质的ER28L。 有必要先简单说一下耦合电感这个模型,让一些刚入门的朋友便于自己动手尝试。在图中的K1、K2、K3就是以耦合电感为核心构造的几个变压器。我们构造这种变压器的时候,需要放置一个耦合电感模型K_Linear或K_Break或一个带磁芯的耦合电感模型例如K3所用的ER28L_3C90这个模型。然后需要根据实际的需要放置一个电感模型作为绕组,有几个绕组就放几个电感模型,但对于一个耦合电感模型,绕组不能超过6个。 下面说说这几个模型的设置。 左边两个理想化模型: K1:耦合电感模型为K_L

3、inear,绕组为L1和L2,必须双击K_Linear模型在其参数L1中输入L1,在参数L2中输入L2,才能实现两个绕组的耦合。耦合系数设定为1,说明是完全耦合。电感L1和L2的电感量,就代表绕组的电感量。我们设定L1为250uH,L2为1000uH。这就意味这初级与次级的匝比为1:2。因为电感量之比是匝比的平方。 TX1:采用理想变压器模型XFRM_LINEAR,这个模型只有两个绕组,双击模型后设定耦合系数为1,两个绕组的电感量也分别设定为250uH和1000uH。 右边的非理想化模型: K2:采用的耦合电感模型为KBreak,同样还需要放置两个电感,这里是L3和L4,双击KBreak

4、的模型,设定耦合系数为1,参数L1为L3,参数L2为L4,把参数Implementation设置为ER28L_3C90。这里要注意了,电感L3和L4的参数分别为10和20。这个数字代表什么意思呢?是电感量吗?不是,千万注意,这里的意思是匝数!凡是采用了带磁芯的模型,就不再用电感量来作为参数了,而是使用匝数。 TX2:采用的非理想变压器模型XFRM_NONLINEAR,同样这个模型只有两个绕组。双击模型后,设定耦合系数为1,参数Implementation设置为ER28L_3C90,参数L1_TURNS和L2_TRUNS分别设置为10和20。很显然,这里也是匝数。 K3:直接采用ER28L_

5、3C90磁芯的耦合电感模型,绕组为L5和L6。双击耦合电感模型,设置耦合系数为1,参数L1为L5,参数L2为L6。把L5和L6的参数改成10和20。 为什么我这里要把采用ER28L_3C90磁芯的模型的匝比设定为10:20呢,因为这个磁芯的电感系数为250nH/N2,这样刚好使初次级之间的电感量之比 为250uH:1000uH,和理想模型的参数一致,方便仿真后结果的比较。 现在我们在每个变压器的初级串一个0.001欧的电阻,次级接上10欧的负载。并放置一个峰值1V,频率10KHz的正弦波电压源给变压器初级提供输入信号,并双击这个信号源,设置初始相位为90度,如图连接好电路,放置0电位的地

6、然后点击菜单pspice项,选择new simulation profile建立一个新的仿真。然后选择时域仿真,见下图: 设定仿真时间从0秒开始到1ms,最大步长100ns,跳过初始化偏压点计算。然后点击菜单pspice,选择Run,仿真就可以开始了。 待仿真完成后,如最开始的图放置电压探头。我们已经知道这些变压器的变比是1:2,那么实际的电压输出是不是这样呢?看看吧: 从图中可以看到,输入电压峰值为1V的正弦波,输出为峰值为2V的正弦波。再如下图放置电流探头: 然后点击仿真器的菜单plot,选择Add plot to window,再放置一个如上图中的看输入电压信

7、号的电压探头,可以同时看到输入电压与输出电流的波形: 从波形上可以看出,每个变压器的输出电流波形几乎是完全一致的。那么有朋友要说了,这么看来,理想变压器和非理想变压器模型的表现好像是一样的,没有什么区别呀?下面我们来继续探讨。理想变压器和非理想变压器的一个重要的区别就是,理想变压器不会饱和,而非理想变压器会饱和。怎么样才能让变压器饱和呢?假如给变压器的初级施加一个直流电压信号,时间长了,励磁电流越来越大,变压器就会饱和。我们来看看是不是这样的。 把输入的交流信号源换成一个0.5V的直流信号源: 然后点击工具栏上的这个 ,再次开始时域扫描(没有改参数,和上次一样)。然后在如

8、图中所示,R1、R5处放置电流探头。在仿真器界面下选择菜单的plot->Add plot to window,再如图在R3、R7、R9处放置电流探头,看看变压器原边电流在长时间施加直流电流会如何变化吧: 从图中可以看到,理想变压器的初级电流线性上升。而非理想变压器的初级电流在大约0.76ms的地方开始急剧上升。是不是变压器在这个地方饱和了呢?我们来计算一下。先看一下磁芯和材质的参数: 根据这些已知参数,按照电磁感应定律: 说明从时间零点开始到0.76毫秒处的磁感应强度增量为467mT。而根据上表中,3C90材质的饱和点约为470mT,说明采用了ER28L_3C90磁芯的几个非理想变压器在这个地方的确开始进入饱和状态了!而理想变压器的初级电流只是线性上升,不会进入饱和! 了解了这些模型的特性,你就可以按照实际的需要选择合适的模型进行仿真。不管是理想化的耦合电感模型,还是非理想的模型,K系列的模型可以支持有6个绕组的耦合电感或变压器。通常足够我们使用了。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服