ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:28.50KB ,
资源ID:9454122      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9454122.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(比例的基本性质教学案例.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

比例的基本性质教学案例.doc

1、《比例的基本性质》教学案例 西夏区九小 王金梅 教学过程 一、创设情境 师:什么叫比例?下面每组中的两个比能否组成比例?出示: 1/3∶1/4和12∶9; 1∶5和0.8∶4; 学生根据比例的意义进行判断,教师结合回答板书: 7∶4≠5∶3 80∶2=200∶5 师:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项(板书:外项、内项)。 师:刚才,你们是根据比例的意义先求出比值再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?告诉你们,老师是运用了比例的基本性质进行判断的。 二、自主探究 师:同学们,比例中的两个外项与两个内

2、项之间存在着一种关系,你能发现吗? 师:请将你的发现告诉你的同伴。不过——,你先要好好想想,你所发现的是不是偶然现象?最好能举些例子验证一下,以免闹出笑话,好吗? 这下,学生们又静了下来,认真地思考着老师的问题,许多学生在纸上写着比例进行着验证。 师:现在,请前后四人为组,将你发现的规律与同伴交流一下,看看大家是否同意? 学生在小组内进行着热烈的交流和讨论,并积极代表小组进行汇报。 生:我们发现了这样一个规律,比例中的两个外项的乘积与两个内项的乘积是相等的。我们还自己写了比例,发现这个规律是正确的。 教师将学生所举比例故意写成分数形式3/8=6/16,追问:哪两个是内项,哪两个是外项,让学生算

3、出积并结合回答板书: 师:老师也写了一个比例(板书:3∶2=5∶4),怎么两个外项的积不等于两个内项的积!你们发现的规律可能是有问题的。 大家很快发现老师把比例写错了。 生:(机灵地)老师,你举的例子从反面证明了我们发现的规律是正确的。因为3∶2和5∶4这两个比是不能组成比例的。只有在比例中,两个外项的积等于两个内项的积。 师:很有道理!同学们很会观察,很会猜想,很会验证,自己发现了比例的基本性质。 板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的基本性质。 三、巩固反思 师:现在,你们能运用比例的基本性质,判断两个比能否组成比例吗?出示:6∶3和8∶5;0.2∶2.5和4∶5

4、0 ;6∶2和9∶3, 有学生回答“因为3与8两个内项的积不等于6与5两个外项的积,所以,这两个比不能组成比例。教师对此引导学生展开严密的思考,假如6:3和8:5是能够组成比例的,则两个外项的积必定等于两个内项的积,而现在3与8的积不等于6与5的积,所以,假设是错的,也就是6∶3和8∶5这两个比是不能够组成比例的。 师:如果让你根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢? 问题一提出,学生就积极地尝试着写比例,不一会儿,学生争着要在投影上展示自己所写的比例。教师激发引导说:同学们学习的热情很高,但仅凭热情往往还不能有效地解决问题,象这样一个一个举例写出,难免会有重复或遗漏,怎样思

5、考才能很快地一个不漏地写出?根据比例的基本性质,若把2放在内项的位置上,那么,9应该放在什么位置上?把2和9同时放在内项位置上,共能写出几个比例?2和9只有同时放在内项的位置上吗?学生受到启发,写出了所有的比例。在学生经历这样一番尝试实践的基础上,教师引导学生反思体验:用尝试的方法去一个一个地写,还是从比例的基本性质出发进行有序思考,你们觉得哪种方法能更有效地解决问题?学生自然体会到后者更好,并表示会这样思考问题了。 师:你能用“3、4、5、8”这四个数组成比例吗?若能,请把组成的比例写出来。 结果,有相当一部分学生仍是尝试,终于发现这四个数是不能组成比例的。对此,教师问学生:你们都是先试着写

6、然后发现不能组成比例的吗?有学生回答:比例中两个内项的积等于两个外项的积,这四个数若能组成比例,其中必有两个数的积等于另外两个数的积,而且只可能是较大的两个数的积等于中间两个数的积,而现在3×8≠4×5,所以,这四个数一定不能组成比例。该生的回答,使学生再一次受到启发,教师对其从比例的基本性质出发进行思考作出判断给予充分肯定。 师:你能从3、4、5、8中换掉一个数,使之能组成比例吗? 许多学生凭籍直觉很快把“5”换成“6”,教师在给学生肯定后继续追问:若要换下其中的任意一个数,你行吗?这一问题将学生的思维引向深入。经过独立思考、集体讨论,大家将要换上的数用字母x表示,由比例的基本性质建立多个

7、不同的方程,求出各方程的解,有效地解决了问题。 师:同学们真行!不仅探索发现了比例的基本性质,还能自觉地运用比例的基本性质,去判断两个比能否组成比例,去求比例中的未知项。 课后反思: 1.重视培养学生主动获取知识的能力。 对于比例的基本性质,教师没有直接让学生去计算两个内项的积和两个外项的积,很快让学生归纳出比例的基本性质。而是设计问题情境,在学生运用已有知识判断出两个比能否组成比例后,教师告诉学生自己是用比例的基本性质也很快作出了判断。什么是比例的基本性质?学生探究知识的欲望被激发了。接着,就让学生自己去观察、寻找比例中内项与外项的关系,提出自己的猜想,举例(包括反例)进行检验,与同伴

8、合作交流,自己揭示出比例的基本性质,学生通过亲身经历的观察比例、归纳猜想、举例验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。 2.注重培养学生数学的应用意识。 小学生解数学题,往往关心问题的答案而不太关心自己的解题过程,更很难自觉地从基本概念出发去思考问题,教学中如何去培养学生从概念出发、运用所学知识解决问题的意识和能力呢?在上面的教学中,教师精心安排三个层次的练习:(1)运用比例的基本性质,判断两个比能否组成比例;(2)请你根据“2×9=3×6”写出比例,能写出多少呢?(3)用“3、4、5、8”这四个数能组成比例吗?若不能,请从3、4、5、8中换掉一个数,使之能组成比例。每个层次的练习,都是先让学生独立思考、进行尝试,再引导学生交流想法,促进学生进行反思,使学生获得切身的体验,感悟到从比例的基本性质出发思考问题,则能更有效地解决问题。这样的练习,才能使学生在巩固和加深对数学基本概念理解的同时,逐渐养成从基本概念出发思考问题的思维习惯,培养学生数学的应用意识,提高学生解决问题的能力。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服