ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:52KB ,
资源ID:9451329      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9451329.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(正多边形和圆的计算.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

正多边形和圆的计算.doc

1、 24.3 正多边形和圆 象洞中学 罗新生 教学目标 1、 通过复习多边形概念、多边形的内角和、外角和,让学生尽可能讲出生活中的多边形为引题引入正多边形和圆这一节间的内容. 2、通过阅读了解正多边形和圆的有关概念;在图中能正确表示正多边形半径和边长、边心距、中心角并写出它们之间的关系;正确辨析正多边形的对称性; 3、能应用多边形和圆的有关知识画多边形及进行有关简单计算. 重难点、关键 1.重点;正确表示正多边形和圆中正多边形半径、中心角、边心距、边长之间的关系. 2.

2、难点与关键:通过例题使学生理解四者:正多边形半径、中心角、弦心距、边长之间的关系。 教学过程 一、复习引入 1、 请同学们口答下面问题: 什么叫多边形?多边形的内角和?外角和?对角线? 2、请同学们口答下面两个问题: ①什么叫正多边形?正n多边形的内角是多少?外角是多少? ②从你身边举出两三个正多边形的实例,正多边形是轴对称图形、中心对称图形吗?其对称轴有几条,对称中心是哪一点? 二、探索新知 如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,正六边

3、形ABCDEF,连结AD、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、D、E、F都在这个圆上. 因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆. 我们以圆内接正六边形为例证明. 如图所示的圆,把⊙O分成相等的6段弧,依次连接各分点得到六边ABCDEF,下面证明,它是正六边形. ∵弧AB=弧BC=弧CD=弧DE=弧EF 又∴∠A=弧BCF=(弧BC+弧CD+弧DE+弧EF)=2弧BC ∠B=弧CDA=(弧CD+弧DE+弧EF+弧FA)=2弧CD

4、 ∴∠A=∠B 同理可证:∠B=∠C=∠D=∠E=∠F=∠A 又六边形ABCDEF的顶点都在⊙O上 ∴根据正多边形的定义,各边相等、各角相等、六边形ABCDEF是⊙O的内接正六边形,⊙O是正六边形ABCDEF的外接圆. 为了今后学习和应用的方便,我们把一个正多边形的外接圆的圆心叫做这个多边形的中心. 外接圆的半径叫做正多边形的半径. 正多边形每一边所对的圆心角叫做正多边形的中心角. 中心到正多边形的一边的距离叫做正多边形的边心距. 例1.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形

5、的周长和面积. 分析:要求正六边形的周长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA,过O点作OM⊥AB垂于M,在Rt△AOM中便可求得AM,又应用垂径定理可求得AB的长.正六边形的面积是由六块正三角形面积组成的. 现在我们利用正多边形的概念和性质来画正多边形. 例2.利用你手中的工具画一个边长为3cm的正六边形. 分析:要画正六边形,首先要画一个圆,然后对圆六等分,因此,应该先求边长为3的正六边形的半径. 分析:正六边形的中心角∠AOB=60°, △AOB 等边三角形,R=3

6、 三、巩固练习 教材P106 练习1、2、3 教材P108 练习1、2 四、归纳小结(学生小结,老师点评) 本节课应掌握: 1.正多边和圆的有关概念:正多边形的中心,正多边形的半径,正多边形的中心角,正多边的边心距. 2.正多边形的半径、正多边形的中心角、边长、正多边的边心距之间的等量关系. 3.画正多

7、边形的方法. 4.运用以上的知识解决实际问题. 板书设计 24.3 正多边形和圆 例题1 课件展示区 例题2 课时作业设计 一、选择题 1.如图1所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是( ). A.60° B.45° C.30° D.22.5° (1) (2) (3)

8、2.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是( ). A.36° B.60° C.72° D.108° 3.若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为( ) A.18° B.36° C.72° D.144° 二、填空题 1.已知正六边形边长为a,则它的内切圆面积为_______. 2.在△ABC中,∠ACB=90°,∠B=15°,以C为圆心,CA长为半径的圆交AB于D,如图2所示,若AC=6,则AD的长为______

9、. 3.四边形ABCD为⊙O的内接梯形,如图3所示,AB∥CD,且CD为直径,如果⊙O的半径等于r,∠C=60°,那图中△OAB的边长AB是______;△ODA的周长是_______;∠BOC的度数是________. 三、综合提高题 1.等边△ABC的边长为a,求其内切圆的内接正方形DEFG的面积. 2.如图所示,已知⊙O的周长等于6cm,求以它的半径为边长的正六边形ABCDEF的面积. 3.如图所示,正五边形ABCDE的对角线AC、BE相交于M. (1)求证:四边形CDEM是菱形; (2)设MF2=BE·BM,若AB=4,求BE的长. 4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服