ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:155.50KB ,
资源ID:9450481      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9450481.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(圆周角定理推论和圆内接四边形教学设计.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

圆周角定理推论和圆内接四边形教学设计.doc

1、圆周角和圆心角的关系(一) 一、教学目标 本节共分2个课时,这是第1课时,主要研究圆周角和圆心角的关系(圆周角定理),具体地说,本节课的教学目标为: 知识与技能 1. 了解圆周角的概念。 2.理解圆周角定理的证明。 过程与方法 1.经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想。 2.体会分类、归纳等数学思想方法。 情感态度与价值观 通过观察、猜想、验证推理,培养学生探索问题的能力和方法。 二、教学重点:圆周角概念及圆周角定理。 三、教学难点:认识圆周角定理需分三种情况证明的必要性。 四、教学过程分析 本

2、节课分为五个教学环节:创设问题情境引入新课、新知学习(关于圆周角的定义、圆周角定理)、练习、课堂小结、布置作业. 第一环节 创设问题情境,引入新课 活动内容:通过一个问题情境,引入课题 情境:在射门游戏中,球员射中球门的难易与他所处的位置B对球门AC的张角(∠ABC)有关。如图,当他站在B,D,E的位置射球时对球门AC的张角的大小是相等的?为什么呢?你能观察到这三个角有什么共同特征吗? 活动目的: 通过此问题引起学生学习的兴趣。此问题意在通过射门游戏引入圆周角的概念。同时为第2课时的学习埋下伏笔. 第二环节 新知学习 A B C 活动内容: (一)圆周角的定义

3、的学习 为解决这个问题我们先来研究一种角。观察图中的∠ABC,顶点在什么位置?角的两边有什么特点? 可以发现,它的顶点在圆上,它的两边分别与圆还有另一个交点。像这样的角,叫做圆周角。 请同学们考虑两个问题: (1)顶点在圆上的角是圆周角吗? (2)角的两边都和圆相交的角是圆周角吗? 判断下列图示中,各图形中的角是不是圆周角?并说明理由。 通过学生完成练习自己总结出圆周角的特征。 圆周角有两个特征: ①角的顶点在圆上; 两边在圆内的部分是圆的两条弦。 活动目的:通过学生主动观察,探索概念的形成,这样能使学生更好地理解概念。 (二)圆周角

4、定理的学习 我们先研究一条弧所对的圆周角与它所对的圆心角之间的关系。 请同学们在圆上确定一条劣弧,画出它所对的圆心角与圆周角。 归纳同学们的意见我们得到以下几种情况: B A O C ① A B C O ② B A C O ③ 引导学生通过小组交流讨论的方式,分别考虑这三种情况下,∠ABC和∠AOC之间的大小关系. 由此得到:一条弧所对的圆周角等于它所对的圆心角的一半。 活动目的: A O C B 学生通过画图,渗透分类讨论的思想,由特殊到一般解决问题的策略。由学生的画图结果我们得到三种图形。在这三种情况下,提问∠ABC与∠AOC

5、的大小有什么关系?通过这个问题的提出,引导学生由特殊到一般解决问题。再由推理论证得到结论。当学生证明了图1的情形后,让学生思考:图2、图3两种情况能否转化为第一种情况?如何转化?实际上,实现转化的方法是连接BO并延长。教学过程中要有意识地向学生渗透解决问题的策略以及转化、分类、归纳等数学思想方法。 第三环节 练习 活动内容: 1.如图,在⊙O中,∠BOC=50°,则∠BAC= 。 A B C O 变化题1: 如图,点A,B,C是⊙O上的三点,∠BAC=40°,则∠BOC= 变化题2: 如图,∠BAC=40°,则

6、∠OBC= 2.如图,OA,OB,OC都是⊙O的半径,∠ AOB=2∠ BOC,∠ ACB与∠ BAC的大小有什么关系?为什么? A B C O 第2题图 A B C D O 第3题图 3.如图,A,B,C,D是⊙O上的四点,且∠BCD=100° ,求∠BOD(BCD所对的圆心角)和∠BAD的大小。 活动目的: 通过练习目的是使学生熟练地掌握圆周角与圆心角的关系。通过图形和条件的变化,让学生了解要找出圆周角与圆心角的关系,就必须找出它们所对的同一条弧。 第四环节 课堂小结 到目前为止,我们学习到和圆有关的角有几个?

7、它们各有什么特点?相互之间有什么关系? 第五环节 布置作业 课后思考 如图,当他站在B,D,E的位置射球时对球门AC的张角的大小是相等的?为什么呢? 目的:过渡下一节课圆周角定理的推论的学习。引起学生自己寻找结果的兴趣。 五、教学反思 把射门游戏问题抽象为数学问题,研究圆周角和圆心角的关系,研究圆周角和圆心角的关系,应该说,学生解决这一问题是有一定难度的,尽管如此,教学时仍应给学生留有时间和空间,让他们进行思考。让学生经历观察、想象、推理、操作、描述、交流等过程,多种角度直观体验数学模型,而这也正符合本章学习的主要目标。 3

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服