ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:133.50KB ,
资源ID:9445146      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9445146.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(北师版七年级上册数据的离散程度.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

北师版七年级上册数据的离散程度.doc

1、4 数据的离散程度 1.极差 定义:一组数据中的最大数据与最小数据的差叫做这组数据的极差,即极差=最大值-最小值.极差反映了这组数据的波动范围. 谈重点 极差 (1)极差是最简单、最便于计算的一种反映数据波动情况的量,极差能够反映一组数据的波动范围;(2)在对一组数据的波动情况粗略估计时经常用到极差;(3)极差仅仅反映了数据的波动范围没有提供数据波动的其他信息,且受极端值的影响较大;(4)一组数据的极差越小,这组数据就越稳定. 【例1】 在一次体检中,测得某小组5名同学的身高分别是170,162,155,160,168(单位:cm),则这组数据的极差是__________c

2、m. 解析:根据极差的概念,用最大值减去最小值即可,170-155=15(cm). 答案:15 2.方差 (1)定义:设有n个数据x1,x2,x3,…,xn,各数据与它们的平均数的差的平方分别是(x1-)2,(x2-)2,(x3-)2,…,(xn-)2,用它们的平均数来衡量这组数据的波动大小,并把它叫做这组数据的方差. (2)方差的计算公式:通常用s2表示一组数据的方差,用表示这组数据的平均数. s2=[(x1-)2+(x2-)2+(x3-)2+…+(xn-)2]. (3)标准差:标准差就是方差的算术平方根. 谈重点 方差 (1)方差是用来衡量一组数据的波动大小的重要的量,

3、方差反映的是数据在它的平均数附近波动的情况;(2)对于同类问题的两组数据,方差越大,数据的波动越大,方差越小,数据的波动越小;(3)一组数据的每一个数据都加上(或减去)同一个常数,所得的一组新数据的方差不变;(4)一组数据的每一个数据都变为原来的k倍,则所得的一组新数据的方差将变为原数据方差的k2倍. 【例2】 已知两组数据分别为: 甲:42,41,40,39,38; 乙:40.5,40.1,40,39.9,39.5. 计算这两组数据的方差. 解:甲=×(42+41+40+39+38)=40, s=×[(42-40)2+…+(38-40)2]=2. 乙=×(40.5+40.1+4

4、0+39.9+39.5)=40, s=×[(40.5-40)2+…+(39.5-40)2]=0.104. 3.极差与方差(或标准差)的异同 相同之处: (1)都是衡量一组数据的波动大小的量; (2)一组数据的极差、方差(或标准差)越小,这组数据的波动就越小,也就越稳定. 不同之处: (1)极差反映的仅仅是数据的变化范围,方差(或标准差)反映的是数据在它的平均数附近波动的情况; (2)极差的计算最简单,只需要计算数据的最大值与最小值的差即可,而方差的计算比较复杂. 【例3】 已知甲、乙两支仪仗队队员的身高如下(单位:cm): 甲队:178,177,179,178,177,

5、178,177,179,178,179 乙队:178,179,176,178,180,178,176,178,177,180 (1)将下表填完整: 身高(cm) 176 177 178 179 180 甲队(人数) 3 4 0 乙队(人数) 2 1 1 (2)甲队队员身高的平均数为_________cm,乙队队员身高的平均数为_________cm; (3)这两支仪仗队队员身高的极差、方差分别是多少? 解:(1)甲队从左到右分别填:0,3,乙队从左到右分别填:4,2; (2)178,178; (3)经过计算可知,甲、乙两支仪仗队队员身高

6、数据的极差分别为2 cm和4 cm,方差分别是0.6和1.8. 4.运用方差解决实际问题 方差是反映一组数据的波动大小的统计量,通过计算方差,可以比较两组数据的稳定程度,进而解决一些实际问题. 对于一般两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的一般水平,方差则反映一组数据在平均数左右的波动大小,因此从平均数看或从方差看,各有长处. 方差的计算可用一句话“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的程度.方差的单位是原数据的平方单位,方差反映了数据的波动大小,在实际问题中,例如长得是否整齐一致、是否稳定等都是波动体现. 点技巧 方

7、差反映波动情况 在实际问题中,如果出现要求分析稳定性的问题,因为方差是反映数据的波动大小的量,所以一般就要计算出各组数据的方差,通过方差的大小比较来解决问题. 【例4】 某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下: 甲 95 82 88 81 93 79 84 78 乙 83 92 80 95 90 80 85 75 (1)请你计算这两组数据的平均数、中位数; (2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由. 解:(1)甲=(95+82

8、+88+81+93+79+84+78)=85, 乙=(83+92+80+95+90+80+85+75)=85. 这两组数据的平均数都是85.这两组数据的中位数分别为83,84. (2)派甲参赛比较合适.理由如下: 由(1)知甲=乙, s=[(95-85)2+(82-85)2+(88-85)2+(81-85)2+(93-85)2+(79-85)2+(84-85)2+(78-85)2]=35.5, s=[(83-85)2+(92-85)2+(80-85)2+(95-85)2+(90-85)2+(80-85)2+(85-85)2+(75-85)2]=41, ∵甲=乙,s<s, ∴甲的

9、成绩较稳定,派甲参赛比较合适. 5.运用用样本估计总体的思想解决实际问题 统计学的基本思想是用样本估计总体,它主要研究两个基本问题:一是如何从总体中抽取样本,二是如何通过对所抽取的样本进行计算和分析,从而对总体的相应情况作出推断. 用样本估计总体是统计的基本思想,正像用样本的平均数估计总体的平均数一样,考察总体方差时,如果所要考察的总体包含很多个体,或考察本身带有破坏性,实际中常常用样本的方差来估计总体的方差. 方差是反映已知数据的波动大小的一个量.在日常生活中,有时只用平均数、中位数和众数难以准确地分析一组数据时,就要用方差来评判.但是并不是方差越小越好,要根据问题的实际情况灵活

10、运用数据分析问题,作出正确的判断. 注:在解决问题或决策时,应运用统计思想,搞清楚特殊和一般的关系,具体问题具体对待.全方位、多角度地分析与评判是关键. 【例5】 某运动队欲从甲、乙两名优秀选手中选一名参加全省射击比赛,该运动队预先对这两名选手进行了8次测试,测得的成绩如下表: 次数 选手甲的成绩(环) 选手乙的成绩(环) 1 9.6 9.5 2 9.7 9.9 3 10.5 10.3 4 10.0 9.7 5 9.7 10.5 6 9.9 10.3 7 10.0 10.0 8 10.6 9.8 根据统计的测试成绩,请你运用所学过的统计知识作出判断,派哪一位选手参加比赛更好?为什么? 解:甲=(9.6+9.7+…+10.6)=10.0,乙=(9.5+9.9+…+9.8)=10.0.s=0.12,s=0.102 5. 结果甲、乙两选手的平均成绩相同,s>s.乙的方差小,波动就小,似乎应该选乙选手参加比赛.但是就这个问题而言,我们不能仅看平均成绩和方差就妄下结论.在这里平均成绩和方差不是最重要的,重要的是看他们的发展潜力或比赛时的竞技状态.从甲、乙两选手的最后四次成绩看,甲的状态正逐步回升,成绩越来越好,而乙明显不如甲的状态好.所以从这个角度看,应选甲选手参加比赛更好.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服