ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:903.05KB ,
资源ID:9444145      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9444145.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高考十年真题数学分项汇编——集合与常用逻辑用语(含答案).docx)为本站上传会员【优****虫】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高考十年真题数学分项汇编——集合与常用逻辑用语(含答案).docx

1、 专题01 集合与常用逻辑用语 考点 十年考情(2015-2024) 命题趋势 考点1 集合间的基本关系 (10年2考) 2023·全国新Ⅱ卷、2020全国新Ⅰ卷 一般给两个集合,要求通过解不等式求出集合,然后通过集合的运算得出答案。 考点2 交集 (10年10考) 2024·全国新Ⅰ卷、2024年全国甲卷、2023·北京卷、2023全国新Ⅰ卷、2022·全国新Ⅱ卷、2022年全国乙卷、2022年全国甲卷、2022全国新Ⅰ卷、2021年全国乙卷、2021年全国甲卷、2021年全国甲卷、2021全国新Ⅰ卷 考点3 并集 (10年8考) 2024·北京卷、20

2、22·浙江卷、2021·北京卷、2020·山东卷、2019·北京卷、2017·浙江卷、2017·全国卷、2016·山东卷、2016·全国卷、2015·全国卷 考点4 补集 (10年8考) 2024年全国甲卷、2023年全国乙卷、2023年全国乙卷、2022·全国乙卷、2022·北京卷、2021全国新Ⅱ卷、2020全国新Ⅰ卷、2018·浙江卷、2018·全国卷、2017·北京卷 考点5 充分条件与必要条件 (10年10考) 2024·全国甲卷、2024·天津卷、2024·北京卷、2023·北京卷、2023·全国甲卷、2023·天津卷 、2023·全国新Ⅰ卷、2022·浙江卷、202

3、2·北京卷、2021·全国甲卷 常以关联的知识点作为命题背景,考查充分条件与必要条件,难度随载体而定。 考点6 全称量词与存在量词 (10年4考) 2024·全国新Ⅱ卷、2020·全国新Ⅰ卷、2016·浙江卷、2015·浙江卷、2015·全国卷、2015·湖北卷 全称量词命题和存在量词命题的否定及参数求解是高考复习和考查的重点。 考点01 集合间的基本关系 1.(2023·全国新Ⅱ卷·高考真题)设集合,,若,则(    ). A.2 B.1 C. D. 【答案】B 【分析】根据包含关系分和两种情况讨论,运算求解即可. 【详解】因为,则有: 若,解得,此时,,不符

4、合题意; 若,解得,此时,,符合题意; 综上所述:. 故选:B. 2.(2020全国新Ⅰ卷·高考真题)已知,若集合,,则“”是“”的(    ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】A 【分析】根据充分条件和必要条件的定义即可求解. 【详解】当时,集合,,可得,满足充分性, 若,则或,不满足必要性, 所以“”是“”的充分不必要条件, 故选:A. 考点02 交集 1.(2024·全国新Ⅰ卷高考真题)已知集合,则(    ) A. B. C. D. 【答案】A 【分析】化简集合,由交集的概念即可得解. 【

5、详解】因为,且注意到, 从而. 故选:A. 2.(2024年全国甲卷高考真题)若集合,,则(    ) A. B. C. D. 【答案】C 【分析】根据集合的定义先算出具体含有的元素,然后根据交集的定义计算. 【详解】依题意得,对于集合中的元素,满足, 则可能的取值为,即, 于是. 故选:C 3.(2023·北京·高考真题)已知集合,则(    ) A. B. C. D. 【答案】A 【分析】先化简集合,然后根据交集的定义计算. 【详解】由题意,,, 根据交集的运算可知,. 故选:A 4.(2023全国新Ⅰ卷高考真题)已知集合,,则(    ) A. B

6、. C. D. 【答案】C 【分析】方法一:由一元二次不等式的解法求出集合,即可根据交集的运算解出. 方法二:将集合中的元素逐个代入不等式验证,即可解出. 【详解】方法一:因为,而, 所以. 故选:C. 方法二:因为,将代入不等式,只有使不等式成立,所以. 故选:C. 5.(2022·全国新Ⅱ卷高考真题)已知集合,则(    ) A. B. C. D. 【答案】B 【分析】方法一:求出集合后可求. 【详解】[方法一]:直接法 因为,故,故选:B. [方法二]:【最优解】代入排除法 代入集合,可得,不满足,排除A、D; 代入集合,可得,不满足,排除C. 故选:

7、B. 【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法; 方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解. 6.(2022年全国乙卷·高考真题)集合,则(    ) A. B. C. D. 【答案】A 【分析】根据集合的交集运算即可解出. 【详解】因为,,所以. 故选:A. 7.(2022年全国甲卷·高考真题)设集合,则(    ) A. B. C. D. 【答案】A 【分析】根据集合的交集运算即可解出. 【详解】因为,,所以. 故选:A. 8.(2022全国新Ⅰ卷·高考真题)若集合,则(    ) A. B. C. D. 【答案】D

8、 【分析】求出集合后可求. 【详解】,故, 故选:D 9.(2021年全国乙卷·高考真题)已知集合,,则(    ) A. B. C. D. 【答案】C 【分析】分析可得,由此可得出结论. 【详解】任取,则,其中,所以,,故, 因此,. 故选:C. 10.(2021年全国甲卷·高考真题)设集合,则(    ) A. B. C. D. 【答案】B 【分析】求出集合后可求. 【详解】,故, 故选:B. 11.(2021年全国甲卷·高考真题)设集合,则(    ) A. B. C. D. 【答案】B 【分析】根据交集定义运算即可 【详解】因为,所以, 故

9、选:B. 【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解. 12.(2021全国新Ⅰ卷·高考真题)设集合,,则(    ) A. B. C. D. 【答案】B 【分析】利用交集的定义可求. 【详解】由题设有, 故选:B . 考点03 并集 1.(2024·北京·高考真题)已知集合,,则(    ) A. B. C. D. 【答案】C 【分析】直接根据并集含义即可得到答案. 【详解】由题意得. 故选:C. 2.(2022·浙江·高考真题)设集合,则(    ) A. B. C. D. 【答案】D 【分析】利用并

10、集的定义可得正确的选项. 【详解】, 故选:D. 3.(2021·北京·高考真题)已知集合,,则(    ) A. B. C. D. 【答案】B 【分析】结合题意利用并集的定义计算即可. 【详解】由题意可得:. 故选:B. 4.(2020·山东·高考真题)设集合A={x|1≤x≤3},B={x|2

11、19·北京·高考真题)已知集合A={x|–11},则A∪B= A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞) 【答案】C 【分析】根据并集的求法直接求出结果. 【详解】∵ , ∴ , 故选C. 【点睛】考查并集的求法,属于基础题. 6.(2017·浙江·高考真题)已知集合,那么 A.(-1,2) B.(0,1) C.(-1,0) D.(1,2) 【答案】A 【详解】利用数轴,取所有元素,得. 【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 7.(2017·全国·高考真题)设集

12、合,则 A. B. C. D. 【答案】A 【详解】由题意,故选A. 8.(2016·山东·高考真题)设集合则= A. B. C. D. 【答案】C 【详解】A={y|y=2x,x∈R}={y|y>0}. B={x|x2-1<0}={x|-10}∪{x|-1-1},故选C. 9.(2016·全国·高考真题)已知集合,,则 A. B. C. D. 【答案】C 【详解】试题分析:集合,而,所以,故选C. 【考点】 集合的运算 【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.

13、 10.(2015·全国·高考真题)已知集合则( ) A. B. C. D. 【答案】A 【详解】因为,,所以 故选A. 考点04 补集 1.(2024年全国甲卷·高考真题)已知集合,则(    ) A. B. C. D. 【答案】D 【分析】由集合的定义求出,结合交集与补集运算即可求解. 【详解】因为,所以, 则, 故选:D 2.(2023年全国乙卷·高考真题)设全集,集合,则(    ) A. B. C. D. 【答案】A 【分析】由题意可得的值,然后计算即可. 【详解】由题意可得,则. 故选:A. 3.(2023年全国乙卷·高考真题)设集合,

14、集合,,则(    ) A. B. C. D. 【答案】A 【分析】由题意逐一考查所给的选项运算结果是否为即可. 【详解】由题意可得,则,选项A正确; ,则,选项B错误; ,则或,选项C错误; 或,则或,选项D错误; 故选:A. 4.(2022·全国乙卷·高考真题)设全集,集合M满足,则(    ) A. B. C. D. 【答案】A 【分析】先写出集合,然后逐项验证即可 【详解】由题知,对比选项知,正确,错误 故选: 5.(2022·北京·高考真题)已知全集,集合,则(    ) A. B. C. D. 【答案】D 【分析】利用补集的定义可得正确的选项.

15、 【详解】由补集定义可知:或,即, 故选:D. 6.(2021全国新Ⅱ卷·高考真题)设集合,则(    ) A. B. C. D. 【答案】B 【分析】根据交集、补集的定义可求. 【详解】由题设可得,故, 故选:B. 7.(2020全国新Ⅰ卷·高考真题)已知全集,集合,则等于(    ) A. B. C. D. 【答案】C 【分析】利用补集概念求解即可. 【详解】. 故选:C 8.(2018·浙江·高考真题)已知全集,,则(    ) A. B. C. D. 【答案】C 【分析】根据补集的定义可得结果. 【详解】因为全集,,所以根据补集的定义得,故选C.

16、 【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 9.(2018·全国·高考真题)已知集合,则 A. B. C. D. 【答案】B 【详解】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果. 详解:解不等式得, 所以, 所以可以求得,故选B. 点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果. 10.(2017·北京·高考真题)已知全集,集合,则 A. B. C. D.

17、 【答案】C 【详解】因为或,所以,故选:C. 【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或Venn图进行处理. 考点05 充分条件与必要条件 1.(2024·全国甲卷·高考真题)设向量,则(    ) A.“”是“”的必要条件 B.“”是“”的必要条件 C.“”是“”的充分条件 D.“”是“”的充分条件 【答案】C 【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可. 【详解】对A,当时,则, 所以,解得或,即必要

18、性不成立,故A错误; 对C,当时,,故, 所以,即充分性成立,故C正确; 对B,当时,则,解得,即必要性不成立,故B错误; 对D,当时,不满足,所以不成立,即充分性不立,故D错误. 故选:C. 2.(2024·天津·高考真题)设,则“”是“”的(   ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】C 【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件. 【详解】根据立方的性质和指数函数的性质,和都当且仅当,所以二者互为充要条件. 故选:C. 3.(2024·北京·高考真题)设 ,是向量,则“”是“或”的( 

19、   ). A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】B 【分析】根据向量数量积分析可知等价于,结合充分、必要条件分析判断. 【详解】因为,可得,即, 可知等价于, 若或,可得,即,可知必要性成立; 若,即,无法得出或, 例如,满足,但且,可知充分性不成立; 综上所述,“”是“且”的必要不充分条件. 故选:B. 4.(2023·北京·高考真题)若,则“”是“”的(    ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】C 【分析】解法一:由化简得到即可判断;解法二:证明充

20、分性可由得到,代入化简即可,证明必要性可由去分母,再用完全平方公式即可;解法三:证明充分性可由通分后用配凑法得到完全平方公式,再把代入即可,证明必要性可由通分后用配凑法得到完全平方公式,再把代入,解方程即可. 【详解】解法一: 因为,且, 所以,即,即,所以. 所以“”是“”的充要条件. 解法二: 充分性:因为,且,所以, 所以, 所以充分性成立; 必要性:因为,且, 所以,即,即,所以. 所以必要性成立. 所以“”是“”的充要条件. 解法三: 充分性:因为,且, 所以, 所以充分性成立; 必要性:因为,且, 所以, 所以,所以,所以, 所以必要性成立.

21、 所以“”是“”的充要条件. 故选:C 5.(2023·全国甲卷·高考真题)设甲:,乙:,则(    ) A.甲是乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件 【答案】B 【分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解. 【详解】当时,例如但, 即推不出; 当时,, 即能推出. 综上可知,甲是乙的必要不充分条件. 故选:B 6.(2023·天津·高考真题)已知,“”是“”的(    ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又

22、不必要条件 【答案】B 【分析】根据充分、必要性定义判断条件的推出关系,即可得答案. 【详解】由,则,当时不成立,充分性不成立; 由,则,即,显然成立,必要性成立; 所以是的必要不充分条件. 故选:B 7.(2023·全国新Ⅰ卷·高考真题)记为数列的前项和,设甲:为等差数列;乙:为等差数列,则(    ) A.甲是乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件 【答案】C 【分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n项和与第n项的关系推理判断作答., 【详解】方

23、法1,甲:为等差数列,设其首项为,公差为, 则, 因此为等差数列,则甲是乙的充分条件; 反之,乙:为等差数列,即为常数,设为, 即,则,有, 两式相减得:,即,对也成立, 因此为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C正确. 方法2,甲:为等差数列,设数列的首项,公差为,即, 则,因此为等差数列,即甲是乙的充分条件; 反之,乙:为等差数列,即, 即,, 当时,上两式相减得:,当时,上式成立, 于是,又为常数, 因此为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C 8.(2022·浙江·高考真题)设,则“”是“”的(    )

24、 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】A 【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解. 【详解】因为可得: 当时,,充分性成立; 当时,,必要性不成立; 所以当,是的充分不必要条件. 故选:A. 9.(2022·北京·高考真题)设是公差不为0的无穷等差数列,则“为递增数列”是“存在正整数,当时,”的(    ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】C 【分析】设等差数列的公差为,则,利用等差数列的

25、通项公式结合充分条件、必要条件的定义判断可得出结论. 【详解】设等差数列的公差为,则,记为不超过的最大整数. 若为单调递增数列,则, 若,则当时,;若,则, 由可得,取,则当时,, 所以,“是递增数列”“存在正整数,当时,”; 若存在正整数,当时,,取且,, 假设,令可得,且, 当时,,与题设矛盾,假设不成立,则,即数列是递增数列. 所以,“是递增数列”“存在正整数,当时,”. 所以,“是递增数列”是“存在正整数,当时,”的充分必要条件. 故选:C. 10.(2021·全国甲卷·高考真题)等比数列的公比为q,前n项和为,设甲:,乙:是递增数列,则(    ) A.甲是

26、乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件 【答案】B 【分析】当时,通过举反例说明甲不是乙的充分条件;当是递增数列时,必有成立即可说明成立,则甲是乙的必要条件,即可选出答案. 【详解】由题,当数列为时,满足, 但是不是递增数列,所以甲不是乙的充分条件. 若是递增数列,则必有成立,若不成立,则会出现一正一负的情况,是矛盾的,则成立,所以甲是乙的必要条件. 故选:B. 【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程. 考点06 全称量词与

27、存在量词 1.(2024·全国新Ⅱ卷·高考真题)已知命题p:,;命题q:,,则(    ) A.p和q都是真命题 B.和q都是真命题 C.p和都是真命题 D.和都是真命题 【答案】B 【分析】对于两个命题而言,可分别取、,再结合命题及其否定的真假性相反即可得解. 【详解】对于而言,取,则有,故是假命题,是真命题, 对于而言,取,则有,故是真命题,是假命题, 综上,和都是真命题. 故选:B. 2.(2020·全国新Ⅰ卷·高考真题)下列命题为真命题的是(    ) A.且 B.或 C., D., 【答案】D 【分析】本题可通过、、、、得出结果. 【详解】A项:因为,所

28、以且是假命题,A错误; B项:根据、易知B错误; C项:由余弦函数性质易知,C错误; D项:恒大于等于,D正确, 故选:D. 3.(2016·浙江·高考真题)命题“,使得”的否定形式是 A.,使得 B.,使得 C.,使得 D.,使得 【答案】D 【详解】试题分析:的否定是,的否定是,的否定是.故选D. 4.(2015·浙江·高考真题)命题“且的否定形式是( ) A.且 B.或 C.且 D.或 【答案】D 【详解】由定义,可知命题“且的否定形式是或 故选D. 考点:命题的否定 5.(2015·全国·高考真题)设命题,则为 A. B. C. D. 【答案】C 【详解】由定义,命题的否命题应该为,即本题的正确选项为C. 6.(2015·湖北·高考真题)命题“,”的否定是 A., B., C., D., 【答案】C 【详解】由定义可知,命题的否定为:,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服