ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:585.26KB ,
资源ID:9442104      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9442104.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高考十年真题数学分项汇编——新定义综合.docx)为本站上传会员【优****虫】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高考十年真题数学分项汇编——新定义综合.docx

1、 专题25 新定义综合 (数列新定义、函数新定义、集合新定义及其他新定义) 考点 十年考情(2015-2024) 命题趋势 考点1 数列新定义 (10年10考) 2024·全国新Ⅰ卷、2024·北京卷、2023·北京卷 2022·北京卷、2021·全国新Ⅱ卷、2021·北京卷2020·全国新Ⅱ卷、2020·北京卷2020·江苏卷2019·江苏卷、2018·江苏卷、2017·北京卷 2017·江苏卷、2016·江苏卷、2016·北京卷 2016·上海卷、2016·上海卷、2015·北京卷 新高考数学新结构体系下,新定义类试题更综合性的考查学生的思维能力和推理能力;以问

2、题为抓手,创新设问方式,搭建思维平台,引导考生思考,在思维过程中领悟数学方法。 题目更加注重综合性、应用性、创新性,本题分值最高,试题容量明显增大,对学科核心素养的考查也更深入。 压轴题命题打破了试题题型、命题方式、试卷结构的固有模式,增强试题的灵活性,采取多样的形式多角度的提问,考查学生的数学能力, 新定义题型的特点是;通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移达到灵活解题的目的;遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义照章办事”逐条分析

3、验证、运算,使问题得以解决,难度较难,需重点特训。 考点2 函数新定义 (10年4考) 2024·上海、2020·江苏、2018·江苏 2015·湖北、2015·福建 考点3 集合新定义 (10年3考) 2020·浙江卷、2018·北京卷 2015·山东卷、2015·浙江卷 考点4 其他新定义 (10年2考) 2020·北京卷、2016·四川卷 考点01 数列新定义 一、 小题 1.(2021·全国新Ⅱ卷·高考真题)(多选)设正整数,其中,记.则(    ) A. B. C. D. 2.(2020·全国新Ⅱ卷·高考真题)0-1周期序列在通信技术中有着

4、重要应用.若序列满足,且存在正整数,使得成立,则称其为0-1周期序列,并称满足的最小正整数为这个序列的周期.对于周期为的0-1序列,是描述其性质的重要指标,下列周期为5的0-1序列中,满足的序列是(    ) A. B. C. D. 二、 大题 1.(2024·全国新Ⅰ卷·高考真题)设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列. (1)写出所有的,,使数列是可分数列; (2)当时,证明:数列是可分数列; (3)从中一次任取两个数和,记数列是可分数列的概率为,证明:. 2.(2024·北京

5、·高考真题)已知集合.给定数列,和序列,其中,对数列进行如下变换:将的第项均加1,其余项不变,得到的数列记作;将的第项均加1,其余项不变,得到数列记作;……;以此类推,得到,简记为. (1)给定数列和序列,写出; (2)是否存在序列,使得为,若存在,写出一个符合条件的;若不存在,请说明理由; (3)若数列的各项均为正整数,且为偶数,求证:“存在序列,使得的各项都相等”的充要条件为“”. 3.(2023·北京·高考真题)已知数列的项数均为m,且的前n项和分别为,并规定.对于,定义,其中,表示数集M中最大的数. (1)若,求的值; (2)若,且,求; (3)证明:存在,满足 使得.

6、 4.(2022·北京·高考真题)已知为有穷整数数列.给定正整数m,若对任意的,在Q中存在,使得,则称Q为连续可表数列. (1)判断是否为连续可表数列?是否为连续可表数列?说明理由; (2)若为连续可表数列,求证:k的最小值为4; (3)若为连续可表数列,且,求证:. 5.(2021·北京·高考真题)设p为实数.若无穷数列满足如下三个性质,则称为数列: ①,且; ②; ③,. (1)如果数列的前4项为2,-2,-2,-1,那么是否可能为数列?说明理由; (2)若数列是数列,求; (3)设数列的前项和为.是否存在数列,使得恒成立?如果存在,求出所有的p;如果不存在,说明理

7、由. 6.(2020·北京·高考真题)已知是无穷数列.给出两个性质: ①对于中任意两项,在中都存在一项,使; ②对于中任意项,在中都存在两项.使得. (Ⅰ)若,判断数列是否满足性质①,说明理由; (Ⅱ)若,判断数列是否同时满足性质①和性质②,说明理由; (Ⅲ)若是递增数列,且同时满足性质①和性质②,证明:为等比数列. 7.(2020·江苏·高考真题)已知数列的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有成立,则称此数列为“λ~k”数列. (1)若等差数列是“λ~1”数列,求λ的值; (2)若数列是“”数列,且an>0,求数列的通项公式; (3)对于给

8、定的λ,是否存在三个不同的数列为“λ~3”数列,且an≥0?若存在,求λ的取值范围;若不存在,说明理由, 8.(2019·江苏·高考真题)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{an}满足:,求证:数列{an}为“M-数列”; (2)已知数列{bn}满足:,其中Sn为数列{bn}的前n项和. ①求数列{bn}的通项公式; ②设m为正整数,若存在“M-数列”{cn},对任意正整数k,当k≤m时,都有成立,求m的最大值. 9.(2018·江苏·高考真题)设,对1,2,···,n的一个排列,如果当s

9、为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记为1,2,···,n的所有排列中逆序数为k的全部排列的个数. (1)求的值; (2)求的表达式(用n表示). 10.(2017·北京·高考真题)设和是两个等差数列,记, 其中表示这个数中最大的数. (Ⅰ)若,,求的值,并证明是等差数列; (Ⅱ)证明:或者对任意正数,存在正整数,当时,;或者存在正整数,使得是等差数列. 11.(2017·江苏·高考真题)对于给定的正整数k,若数列{an}满足 对任意正整数n(n> k) 总成立,则称数列{an} 是“P(k)数列”.

10、 (1)证明:等差数列{an}是“P(3)数列”; (2)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列. 12.(2016·江苏·高考真题)记.对数列和的子集,若,定义;若,定义.例如:时,.现设是公比为3的等比数列,且当时,. (1)求数列的通项公式; (2)对任意正整数,若,求证:; (3)设,求证:. 13.(2016·北京·高考真题)设数列A: , ,… ().如果对小于()的每个正整数都有 < ,则称是数列A的一个“G时刻”.记“是数列A的所有“G时刻”组成的集合. (1)对数列A:-2,2,-1,1,3,写出的所有元素; (2)

11、证明:若数列A中存在使得>,则 ; (3)证明:若数列A满足- ≤1(n=2,3, …,N),则的元素个数不小于 -. 14.(2016·上海·高考真题)若无穷数列满足:只要,必有,则称具有性质. (1)若具有性质,且,,求; (2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,,判断是否具有性质,并说明理由; (3)设是无穷数列,已知.求证:“对任意都具有性质”的充要条件为“是常数列”. 15.(2016·上海·高考真题)对于无穷数列{}与{},记A={|=,},B={|=,},若同时满足条件:①{},{}均单调递增;②且,则称{}与{}是无穷互补数列. (1)若=,

12、判断{}与{}是否为无穷互补数列,并说明理由; (2)若=且{}与{}是无穷互补数列,求数列{}的前16项的和; (3)若{}与{}是无穷互补数列,{}为等差数列且=36,求{}与{}得通项公式. 16.(2015·北京·高考真题)已知数列满足:,,且.记 集合. (Ⅰ)若,写出集合的所有元素; (Ⅱ)若集合存在一个元素是3的倍数,证明:的所有元素都是3的倍数; (Ⅲ)求集合的元素个数的最大值. 考点02 函数新定义 一、 小题 1.(2015·湖北·高考真题)已知符号函数 是上的增函数,,则 A. B. C. D. 2.(2015·福建·高考真题)一个二元

13、码是由0和1组成的数字串 ,其中 称为第 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0) 已知某种二元码 的码元满足如下校验方程组: 其中运算 定义为: . 现已知一个这种二元码在通信过程中仅在第 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定 等于 . 二、 大题 1.(2024·上海·高考真题)对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”. (1)对于,求证:对于点,存在点,使得点是在的“最近点”; (2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直

14、 (3)已知在定义域R上存在导函数,且函数 在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性. 2.(2020·江苏·高考真题)已知关于x的函数与在区间D上恒有. (1)若,求h(x)的表达式; (2)若,求k的取值范围; (3)若求证:. 3.(2018·江苏·高考真题)记分别为函数的导函数.若存在,满足且,则称为函数与的一个“点”. (1)证明:函数与不存在“点”; (2)若函数与存在“点”,求实数的值; (3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“点”,并说明理由. 考点03 集合新定义 一、 小题 1.(

15、2020·浙江·高考真题)设集合S,T,SN*,TN*,S,T中至少有两个元素,且S,T满足: ①对于任意x,yS,若x≠y,都有xyT ②对于任意x,yT,若x

16、 3.(2015·浙江·高考真题)设,是有限集,定义,其中表示有限集A中的元素个数,命题①:对任意有限集,,“”是“ ”的充分必要条件; 命题②:对任意有限集,,,, A.命题①和命题②都成立 B.命题①和命题②都不成立 C.命题①成立,命题②不成立 D.命题①不成立,命题②成立 4.(2015·湖北·高考真题)已知集合,,定义集合,则中元素的个数为 A.77 B.49 C.45 D.30 二、 大题 1.(2018·北京·高考真题)设n为正整数,集合A=.对于集合A中的任意元素和,记 M()=. (Ⅰ)当n=3时,若,,求M()和M()的值; (Ⅱ)当n=4时,

17、设B是A的子集,且满足:对于B中的任意元素,当相同时,M()是奇数;当不同时,M()是偶数.求集合B中元素个数的最大值; (Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素,M()=0.写出一个集合B,使其元素个数最多,并说明理由. 考点04 其他新定义 1.(2020·北京·高考真题)2020年3月14日是全球首个国际圆周率日( Day).历史上,求圆周率的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数充分大时,计算单位圆的内接正边形的周长和外切正边形(各边均与圆相切的正边形)的周长,将它们的算术平均数作为的近似值.按照阿尔·卡西的方法,的近似值的表达式是(    ). A. B. C. D. 2.(2016·四川·高考真题)在平面直角坐标系中,当不是原点时,定义的“伴随点”为,当P是原点时,定义“伴随点”为它自身,现有下列命题: ①若点A的“伴随点”是点,则点的“伴随点”是点. ②单元圆上的“伴随点”还在单位圆上. ③若两点关于x轴对称,则他们的“伴随点”关于y轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是 .

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服