ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:693.87KB ,
资源ID:9440732      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9440732.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(SM00120140414 最优化理论梯度下降法.docx)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

SM00120140414 最优化理论梯度下降法.docx

1、最优化理论之梯度下降法 文章编号SM00120140414 梯度下降法是一个一阶最优化算法,通常也称为最速下降法。 1、有关梯度下降法的描述 梯度下降法,基于这样的观察:如果实值函数F(x)在点a处可微且有定义,那么函数 F(x)在 a点沿着梯度相反的方向 下降最快。因而,如果,对于 为一个足够小的小数值时成立,那么 。 考虑到这一点,我们可以从函数 的局部极小s值的初始估计 出发,并考虑如下序列 x0, x1, x2, …, xn使得 因此可得到 如果顺利的话序列(xn)收敛到期望的极值。注意每次迭代步长 可以改变。 右侧的图片示例了这一过程,这里假设 定义

2、在平面上,并且函数图像是一个碗形。蓝色的曲线是等高线(水平集),即函数 F为常数的集合构成的曲线。红色的箭头指向该点梯度的反方向。(一点处的梯度方向与通过该点的等高线垂直)。沿着梯度下降方向,将最终到达碗底,即函数 F值最小的点。 直观的解释:函数J(a)在某点ak的梯度是一个向量,其方向是J(a)增长最快的方向。显然,负梯度方向是J(a)减少最快的方向。在梯度下降法中,求某函数极大值时,沿着梯度方向走,可以最快达到极大点;反之,沿着负梯度方向走,则最快地达到极小点。 推导: 求函数J(a)极小值的问题,可以选择任意初始点a0,从a0出发沿着负梯度方向走,可使得J(a)下降最快。

3、 s(0):点a0的搜索方向。 对于任意点ak,可以定义ak点的负梯度搜索方向的单位向量为: 从ak点出发,沿着方向走一步,步长为,得到新点ak+1,表示为: 因此,在新点ak+1,函数J(a)的函数值为: 所有的ak组成一个序列,该序列由迭代算法生成 a0, a1, a2, … , ak, ak+1, ... 该序列在一定条件下收敛于使得J(a)最小的解a* 迭代算法公式: 关键问题:如何设计步长 如果选得太小,则算法收敛慢,如果选得太大, 可能会导致发散。 2、示例 梯度下降法处理一些复杂的非线性函数会出现问题,例如Rosenbrock函数 其最小值在(x, y)=(1, 1)处,数值为f(x, y)=0。但是此函数具有狭窄弯曲的山谷,最小值 (x, y)=(1, 1) 就在这些山谷之中,并且谷底很平。优化过程是“之”字形的向极小值点靠近,速度非常缓慢。 下面这个例子也鲜明的示例了"之"字的下降,这个例子用梯度下降法求 : 的极小值。 3、缺点 由上面的两个例子,梯度下降法的缺点如下: 靠近极小值时速度减慢。 直线搜索可能会产生一些问题。 可能会'之字型'地下降。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服