ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:341.50KB ,
资源ID:9439653      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9439653.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(双曲线型函数.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

双曲线型函数.doc

1、双曲线型函数的性质及其应用 梁开华 对于函数,一般并不陌生;高中数学应用也常见不鲜。且形成基本不等式的一种变形形式处理最值及求解变化范围一类的问题。即时,,时取等号;时,,时取等号。考察这一函数的图象如图1,很显然,时,0<,为减函数;,为增函数。时略。所有这些,解题时都可以直接应用。 正因为这一函数情况简明,与不等式又有关联,有相当广泛的应用意义是很自然的。在教学中,有的称之为“双钩”函数;有的称之为“奈克”函数,笔者以为都欠贴切。其实,它是反比例函数与一次函数的一种复合,叫做“双曲线型”函数比较恰当。 “双曲线型”函数是一种广义的定义,比如减号连接,就出现如图2-1,图

2、2-2的两种变化。前者或都是增函数;后者却都是减函数。又如图2-3,变量的系数不是1,=6时有最小值。 由于这一函数的特殊性,似应把性质的讨论进行得更深入些。除了上述的以外,笔者特别给出下面的相关性质。同样,这些性质应可直接应用: 性质1:上述已经给出的双曲线型函数,两条渐近线为轴,及或;对于,简单起见,,则,当且仅当时取等号。一条渐近线改变为。 性质2:上述已经给出的双曲线型函数,以为例,都具有明确的上凸性或下凹性。略。 以后应用,只要说明是上凸或下凹就可以了,不必再进行其他比如导数过程的论证。 性质3:对于函数时,如果,则。略。 性质4:对于函数时,由性质3, 若成立,则亦;

3、 若成立,则亦。 即两者一定不等号方向相同。略。 性质5:对于函数,考察,只要其图象满足:①0<(或>0),为减函数;(或),为增函数②是下凹函数。就认为是与相仿的双曲线型函数,可直接应用双曲线型函数的一应性质。典型的例子如2006年上海的高考压轴题中的第(3)小题的函数。当然展开以后,是一系列的双曲线型函数相加。但笔者这里阐明性质以后,类此就可直接说明本身就是双曲线型函数。时,有最小值。基于此,即有 性质6:类型的双曲线型函数,其和仍是类型的双曲线型函数;如果始终,且是类型的双曲线型函数,则仍是类型的双曲线型函数。且总在时,取得最小值。可参看下面的图3。 性质7:对于函数,考察,有

4、 则由性质4,一定 ,或; 如果,当然这是不可能的; 则一定 ,或。 上述函数性质十分简明,不必讲究证明,亦尽可放心应用。 比如,即。因为,所以,。否则,不可能。这就是性质7。 一般地,是多项式类函数,或进一步还形成这类多项式函数的乘方或根式,往往即为类型的双曲线型函数。现在如“几何画板”一类的函数作图十分流行,不必拘泥于代数论证,只须图形验证即可。但不经图形认可,盲目臆断是不行的。周期类函数比如,就不是类型的双曲线型函数。 为进一步说明类型的双曲线型函数的应用,再看一个不等式证明问题解决的例子。本例(为伊朗数竞题·1998)由翟得玉先生网上提出: 证明:设。 设,即证

5、 。 (1) 对于,由于,由对称性,总认为0

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服