ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:79.77KB ,
资源ID:9437878      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9437878.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(一些有名的几何定理.docx)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

一些有名的几何定理.docx

1、 一些有名的几何定理 取材自维基百科-中文版. 没事的时候大家可以证着玩! 答案在这里. 1. 阿基米德中点定理说明:圆上有两点A,B,M为弧AB的中点,随意选圆上的一点C,D为AC上的点使得MD垂直AC。若M、C在弦AB异侧,则AD=DC+BC;若M、C在弦AB同侧,则AD=DC-CB。 2. 婆罗摩笈多定理指出:若圆内接四边形的对角线相互垂直,则垂直于一边且过对角线交点的直线将平分对边。婆罗摩笈多是印度数学家。 3. 凡·奥贝尔定理(van Aubel's theorem)说明:给定一个四边形,在其边外侧构造一个正方形。将相对的正方形的中心连起,得出两条线段。线段的长度相等且垂

2、直。 4. 芬斯勒–哈德维格尔定理(Finsler-Hadwiger Theorem)说明:若两个正方形ABCD和AB'C'D'拥有同一个顶点A。B'D的中点、BD'的中点、ABCD的中心和AB'C'D'的中心将组成一个正方形。 5. 莫雷角三分线定理(Morley's theorem)说明对所有的三角形,其三个内角作角三分线,靠近公共边三分线的三个交点,是一个等边三角形。此定理由法兰克·莫雷在1899年发现。对外角作外角三分线,也会有类似的性质,可以再作出4个等边三角形。 此定理有趣的地方是我们没办法用尺规作图作出其等边三角形,因为已经证明出尺规做图无法做出三等分角。   6. 拿

3、破仑定理,是拿破仑发现的平面几何学定理:“以三角形各边为边分别向外侧作等边三角形,则他们的中心构成一个等边三角形。”该等边三角形称为拿破仑三角形。如果向内作三角形,结论同样成立。     同时拿破仑留下这样的名言: ''一个国家只有数学蓬勃发展,才能表现他的国力强大。 ——拿破仑 7. 泰博定理是法国几何学家维克多·泰博(Victor Thébault,1882年-1960年))提出的平面几何问题。 1. 取平行四边形的边为正方形的边,作四个正方形(同时在平行四边形内或外皆可)。正方形的中心点所组成的四边形为正方形。(此为凡·奥贝尔定理的特例。) 2. 取正方形的两条邻边为

4、三角形的边,作两个等边三角形(同时在正方形内或外皆可)。这两个三角形不在正方形边上的顶点,和正方形四个顶点中唯一一个不是三角形顶点的顶点,组成一等边三角形。 3. 给定任意三角形ABC,BC上任意一点M。作两个圆形,均与AM、BC、外接圆相切。该两圆的圆心和三角形内切圆心共线。(应用:日本定理) 第三题是最难的。1938年《美国数学月刊》曾刊出第三题,但直至1973年才为荷兰数学家H. Streefkerk证出。2003年,Ayme发现早在1905年Y. Sawayama已解决这题。 8. 维维亚尼(Viviani)定理说明:在等边三角形内任意一点P跟三边的垂直距离之和,等于三角形的高

5、 这个定理可一般化为:等角多边形内任意一点P跟各边的垂直距离之和,是不变的,跟该点的位置无关。 它以温琴佐·维维亚尼命名。 9. 西姆松定理说明:有三角形ABC,平面上有一点P。P在三角形三边上的投影(即由P到边上的垂足)共线(此线称为西姆松线, Simson line)当且仅当P在三角形的外接圆上。 相关的结果有: · 称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 · 两点的西姆松线的交角等于该两点的圆周角。 · 若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。   10. 卡诺定理 设ABC为三

6、角形,O为其外心。则O到ABC各边的距离之和为     OOA + OOB + OOC = R + r, 其中r为内切圆半径,R为外接圆半径。这个定理叫做卡诺定理。 11. 塞瓦线段(cevian)是各顶点与其对边或对边延长线上的一点连接而成的直线段。塞瓦定理指出:如果的塞瓦线段AD、BE、CF通过同一点O,则   它的逆定理同样成立:若D、E、F分别在的边BC、CA、AB或其延长线上,且满足 , 则直线AD、BE、CF共点或彼此平行(于无限远处共点)。当AD、BE、CF中的任意两直线交于一点时,则三直线共点;当AD、BE、CF中的任意两直线平行时,则三直线平行。 它最先由

7、意大利数学家乔瓦尼·塞瓦证明。    12. 梅涅劳斯定理(Menelaus's theorem)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一直线与的边BC、CA、AB分别交于L、M、N,则有: 。 它的逆定理也成立:若有三点L、M、N分别在的边BC、CA、AB或其延长线上(至少有一点在延长线上),且满足 则L、M、N三点共线。利用这个逆定理,可以判断三点共线。    case 1. 直线LMN穿过三角形ABC           case 2. 直线LMN在三角形ABC外面   13. 蝴蝶定理(Butterfly theorem),是古典欧氏平面几何的最精彩的结果之

8、一。 设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC各相交PQ于点X和Y,则M是XY的中点。 14. 密克定理   三圆定理:设三个圆C1, C2, C3交于一点O,而M, N, P分别是C1 和C2, C2和C3, C3和C1的另一交点。设A为C1的点,直线MA交C2于B,直线PA交C3于C。那么B, N, C这三点共线。   逆定理:如果是三角形,M, N, P三点分别在边AB, BC, CA上,那么三角形, , 的外接圆交于一点O。   完全四线形定理:如果ABCDEF是完全四线形,那么三角形, , , 的外接圆交于一点 O,称为密克点。     四圆定理

9、设C1, C2,C3, C4为四个圆,A1和B1是C1和C2的交点,A2和B2是C2 和C3的交点,A3和B3是C3和C4的交点,A4和B4是C1和C4的交点。那么A1, A2, A3, A4四点共圆当且仅当B1, B2, B3, B4四点共圆。   五圆定理:设ABCDE为任意五边形,五点F, G, H, I, J分别是EA和BC , AB和CD, BC和DE, CD和EA, DE和AB的交点,那么三角形, , , , 的外接圆的五个不在五边形上的交点共圆,而且穿过这些交点的圆也穿过五个外接圆的圆心。 逆定理:设C1,, C2, C3, C4, C5五个圆的圆心都在圆C上,相邻的圆交于C上,那么把它们不在C上的交点与比邻同样的点连起来,所成的五条直线相交于这五个圆上。  15. 帕普斯定理     设U,V,W,X,Y和Z为平面上六条直线。如果: (1)U与V的交点,X与W的交点,Y与Z的交点共线,且 (2)U与Z的交点,X与V的交点,Y与W的交点共线, 则(3)U与W的交点,X与Z的交点,Y与V的交点共线。这个定理叫做帕普斯定理。 16. 托勒密定理 四边形两组对边乘积之和不小于两条对角线的乘积。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服