ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:137.50KB ,
资源ID:9433838      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9433838.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(一元二次方程求根公式及讲解.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

一元二次方程求根公式及讲解.doc

1、主讲:黄冈中学高级教师  一、一周知识概述 1、一元二次方程的求根公式   将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.   该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.   说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);   (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;   (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4a

2、c>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识总结 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。   (1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。   (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。   (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式

3、法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。   (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:   (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;   (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c

4、   (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算, 解:(1)因为a=1,,c=10         所以     所以   (2)原方程可化为     因为a=1,,c=2         所以     所以.   (3)原方程可化为     因为a=1,,c=-1     所以     所以;     所以. 总结:   (1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二

5、次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;   (2)用求根公式法解方程按步骤进行. 例2、用适当方法解下列方程:    ①         ②    ③       ④    ⑤   ⑥    ⑦ 分析:   要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。就直接开平方法、配方法、公式法、因式分解法这四种方法而言,配方法、公式法是一般方法,而开平方法、因式分解法是特殊方法。   ⑴ 公式法是最一般的方法,只要明确了二次项系数、一次项系数和常数项,若方程有实根

6、就一定可以用求根公式求出根,但因为要代入一元二次方程的求根公式求值,所以对某些方程,解法又显得复杂了。如①,可以直接开平方,就能马上得出解;若此时还用求根公式就显得繁琐了。   ⑵ 配方法是一种非常重要的方法,在解一元二次方程时,一般不使用,但并不是一定不用,若能合理地使用,也能起到简便的作用。若方程中的一次项系数有因数是偶数,则可使用,计算量也不大。如②,因为224比较大,分解时较繁,此题中一次项系数是-2。可以利用用配方法来解,经过配方之后得到,显得很简单。   ⑶ 直接开平方法一般解符合型的方程,如第①小题。   ⑷ 因式分解法是一种常用的方法,它的特点是解法简单,故它是解题中首

7、先考虑的方法,若一元二次方程的一般式的左边不能分解为整数系数因式或系数较大难以分解时,应考虑变换方法。 解:①          两边开平方,得     所以   ②     配方,得          所以     所以   ③          配方,得          所以     所以   ④     因为     所以 =4+20=24     所以     所以   ⑤          配方:          所以     所以   ⑥     整理,得          所以     ⑦   

8、  移项,提公因式,得          所以 小结:   以上各题请同学们用其他方法做一做,再比较各种方法的优缺点,体会如何选用合适的方法,下面给出常规思考方法,仅作参考。    例3、已知关于x的方程ax2-3x+1=0有实根,求a的取值范围. 解:当a=0时,原方程有实根为   若a≠0时,当原方程有两个实根.   故,综上所述a的取值范围是. 小结:   此题要分方程ax2-3x+1=0为一元一次方程和一元二次方程时讨论,即分当a=0与a≠0两种情况. 例4、已知一元二次方程x2-4x+k=0有两个不相等的实数根.   (1)求k的取值范围;   (2)如果

9、k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值. 解:(1)因为方程x2-4x+k=0有两个不相等的实数根,     所以b2-4ac=16-4k>0,得k<4.   (2)满足k<4的最大整数,即k=3.     此时方程为x2-4x+3=0,解得x1=1,x2=3.     ①当相同的根为x=1时,则1+m-1=0,得m=0;     ②当相同的根为x=3时,则9+3m-1=0,得     所以m的值为0或 例5、设m为自然数,且3

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服