ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:142.50KB ,
资源ID:9412761      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9412761.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(二次函数表达式.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

二次函数表达式.doc

1、 教师助手 学生帮手 家长朋友 、第二章 二次函数 《确定二次函数的表达式(第2课时)》 一、学生知识状况分析 在前几节课,学生已经分别学习了二次函数的图象与性质,确定二次函数的表达式(第1课时).在此基础上,通过对待定系数法进一步探讨二次函数的表达式的确定方法. 二、教学任务分析 本节课是北师大版义务教育教科书九年级(下)第二章《二次函数》第三节的第2课时,主要是通过对用待定系数法求二次函数表达式的探究,掌握求表达式的方法.能灵活的根据条件恰当地选取选择表达式,体会二次函数表达式之间的转化. 教学目标 知

2、识目标:经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识. 技能目标:会用待定系数法求二次函数的表达式. 情感目标:逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯. 教学重点 求二次函数的解析式 教学难点 根据问题灵活选用二次函数表达式的不同形式,求出函数解析式,解决实际问题 三、教法学法 “问题情境—建立模型—应用与拓展”,让学生积极探索,并和同伴进行交流,勇于发表自己的观点,从交流中发现新知识. 四、教学过程 本节课设计了五个环节:第一环节:情境引入;第二环节:问题

3、解决;第三环节:反馈练习;第四环节:课时小结;第五环节:作业布置. 第一环节:情境引入 (从现实情境和已有知识经验出发,讨论求二次函数表达式的方法) 1、一般地,形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数,所以,我们把________________________叫做二次函数的一般式. 2、二次函数y=ax2+bx+c,用配方法可化成:y=a(x-h)2+k,顶点是(h,k). 配方: y=ax2+bx+c=__________________=___________________ =__________________=a(x+ )2+

4、 . 对称轴是x= ,顶点坐标是 ,其中 h= ,k= , 所以,我们把_____________叫做二次函数的顶点式. 3、已知A(2,1)、B(0,-4),求经过A、B两点的一次函数表达式. 解:设过A、B两点的一次函数表达式为 把 、 代入 解得k= ,b= 所以表达式为 . 我们把这种方法叫做待定系数法. 提出问题:确定二次函数y=ax2+bx+c需要哪些条件? 第二环节:问题解决 例1 已知一个二次函数的图象经过(-1,10),(1,4),

5、2,7)三点, 求这个二次函数的表达式,并写出它的对称轴和顶点坐标. 分析:(1)本题可以设函数的表达式为? (2)题目中有几个待定系数? (3)需要代入几个点的坐标? (4)用一般式求二次函数的表达式的一般步骤是什么? 解:设所求的二次函数的表达式为 由已知,将三点(-1,10),(1,4),(2,7)分别代入表达式,得 解这个方程组,得 ∴ 所求函数表达式为 ∴ ∴ 二次函数对称轴为直线,顶点坐标为 说明:通过解决此问题,让学生体会求二次函数表达式的一般方法------待定系数法,此问题解决后及时引导学生总结解法. 探究活动:一个二次函

6、数的图象经过点 A(0,1),B(1,2),C(2,1),你能确定这个二次函数的表达式吗?你有几种方法?与同伴进行交流. 方法一 解:设所求的二次函数的表达式为 由已知,将三点(0,1),(1,2),(2,1),分别代入表达式,得 解这个方程组,得 ∴ 所求函数表达式为 方法二 解: A(0,1)与C(2,1)的纵坐标相同 ∴ A, C两点关于二次函数的对称轴对称 根据对称轴性质可得对称轴的横坐标 ∴所以B(1,2)为二次函数的顶点 ∴可设 ,将A(0,1)代入 解得 ∴ 思考:在完成第一个例题后,第一个问题对大部分学生是比较容易用待定系数法来解

7、决的.第二个问题引导学生从学过的二次函数的顶点式出发,观察三个点具有的特点,从而找到解决问题的办法. 由学生自主探究后小组交流,对有困难的学生教师可适当点拨.在运用用猜想、比较、方法选择等方法引导学生探究问题,从而大大的提高学生分析问解决问题的能力. 探究一:观察三个点坐标,找出特点. 探究二:如何说明B点是顶点 探究三:如何用我们学过的方法求这个二次函数的解析式 探究四:总结一下如何根据问题灵活选用二次函数表达式的不同形式,求出函数解析式. 第三环节:反馈练习 1.已知二次函数的图像过点A(0,-1)B(1,-1)C(2,3)求此二次函数解析式 2.已知二次函数的图像过点A(

8、1,-1)B(-1,7)C(2,1)求此二次函数解析式; 3.已知二次函数图像的顶点坐标为(-1,-8),图像与x轴的一个公共点A的横坐标为-3,求这个函数解析式 第四环节:课时小结 1.掌握求二次函数的解析式的方法——待定系数法; 2.能根据不同的条件,恰当地选用二次函数解析式的形式,尽量使解题简捷; 3.解题时,应根据题目特点,灵活选用,必要时数形结合以便于理解. 说明:让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结. 第五环节:作业布置 作业:习题2.7 1.2.3 六、教学设计反思 (1)设计理念 二次函数是研究现实世界变化规律的一个重要模型,是初中阶段数学学习的一个重要内容.在本节教学设计中,利用已经学习过的知识,进一步探究待定系数法解决二次函数表达式的确定,同时通过对给出条件的分析,选择合适的二次函数表达式和方法来解决问题. (2)突出重点、突破难点的策略 本节课是在学生已经掌握了二次函数的有关性质和表达式的基础上,对有关 知识进行应用和拓展.在教学过程中,教师应通过问题情境的创设,激发学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生进行探究活动.在师生互动、生生互动的探究活动中,提高学生解决实际问题的能力. 教师助手 学生帮手 家长朋友

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服