1、《普通高中课程标准实验教科书·数学 1》(人教B版) 第三章第一节第二课(3.1.2)《指数函数 》 指数函数的图象及其性质 山东省临朐第二中学 谢文利 一、 教材分析 1.教材背景 本节课是《普通高中课程标准实验教科书·数学 1》(人教B版)第三章第一节第二课(3.1.2)《指数函数 》。指数函数是在学习了函数的现代定义及其图象、性质,掌握了研究函数的一般思路,并将幂指数从整数扩充到实数范围之后,学习的第一个重要的基本初等函数,本节内容分两课时完成(学习指数函数的概念、图象、性质,指数函数及其性质的应用),这是第一节课“学习指数函数的概念、图象、性质”
2、 2.本课的地位和作用 指数函数是重要的基本初等函数之一,本节内容既是函数内容的深化,又是今后学习对数函数的基础, 在教材中起到了承上启下的作用。在指数函数的研究过程中蕴含了数形结合、分类讨论、归纳推理、演绎推理等数学思想方法,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。通过学习可以帮助学生进一步理解函数,培养学生的函数应用意识,增强学生学习数学的兴趣爱好。 二、重难点分析 根据新课程标准及对教材的分析,确定本节课重难点如下: 重点:本节课是围绕指数函数的概念和图象,并依据图象特征探究归纳其性质展开的。因此本节课的教学重点是掌握指数函数的图象和性质。 难点:
3、 1、对于和时函数图象的不同特征,学生不容易归纳认识清楚。因此,弄清楚底数a对函数图象的影响是本节的难点之一。 2、底数相同的两个函数图象间的关系。 三、目标分析 1.知识技能目标 掌握指数函数的概念、图象和性质,能画出具体指数函数的图象。 2.过程性目标 通过自主探索,让学生经历“特殊→一般→特殊”的认知过程,在教学过程中通过归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法。 3.情感、价值观目标 让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美,体会数
4、学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。 四、学情分析 1.有利因素 学生刚刚学习了函数的定义、图象、性质,已经掌握了研究函数的一般思路方法,对于本节课的学习会有很大帮助。 2.不利因素 本节内容较多,对学习数学的严谨性要求和对分类讨论、归纳推理等能力有较高要求,学生学习起来有一定难度。 五、教法学法 1.函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道
5、函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便能将其迁移到其他函数的研究中去。 2. 在本课的教学中我努力实践以下两点: ⑴.在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。 ⑵.在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。 3.通
6、过课堂教学活动向学生渗透数学思想方法。 六、教学过程设计 创设情景、提出问题→师生互动、探究新知→巩固训练、提升总结 →知识扩展→课堂练习→课堂小结→课后作业 七、教学过程: (一)创设情景、提出问题(约3分钟) 1.复习旧知 函数的三要素是什么?函数的单调性反映了函数哪方面的特征? 答:函数的三要素包括:定义域、值域、对应法则。函数的单调性反映了函数值随自变量变化而发生变化的一种趋势,例如:某个函数当自变量取值增大时对应的函数值也增大则表明此函数为增函数,图象上反应出来越往右图象上的点越高。 2.新课引入 师:如果让1号同学准备2粒米,2号同学准备4粒米
7、3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……按这样的规律,51号同学该准备多少米? 学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重。 师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……按这样的规律,51号同学该准备多少米? 【学情预设:学生可能说很多或能算出具体数目】 师:大家能否估计一下,51号同学该准备的米有多重? 教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨。 师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据
8、显示,2007~2008年度我国大米产量预计为1.27亿吨。这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量! 【设计意图:用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望。】 在以上两个问题中,每位同学所需准备的米粒数用表示,每位同学的座号数用表示,与之间的关系分别是什么? 学生很容易得出y=2x()和() 【学情预设:学生可能会漏掉的取值范围,教师要引导学生思考具体问题中的范围。】 (二)师生互动、探究新知 1.指数函数的定义 师:其实,在本章开头的问题2中,也有
9、一个与类似的关系式() ⑴让学生思考讨论以下问题(问题逐个给出):(约3分钟) ①()和()这两个解析式有什么共同特征? ②它们能否构成函数? ③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 【设计意图:引导学生从具体问题、实际问题中抽象出数学模型。学生对比已经学过一次函数、反比例函数、二次函数,发现,是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣。】 引导学生观察,两个函数中,底数是常数,指数是自变量。 师:如果可以用字母代替其中的底数,那么上述两式就可以表示成的形式。自变量在指数位置,所以我们把它称作指数函数。 ⑵让学生
10、讨论并给出指数函数的定义。(约6分钟) 对于底数的分类,可将问题分解为: ①若会有什么问题?(如,则在实数范围内相应的函数值不存在) ②若 会有什么问题?(对于 ,都无意义) ③若 又会怎么样?(无论 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定 且 . 在这里要注意生生之间、师生之间的对话。 【学情预设: ①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求;为什么不行? ②若学生只给出,教师可以引导学生通过类比一次函数()、反比例函数()、二次函数()中的限制条件, 思考指数函数中底数的限制条件。】 【设计意图 :①对
11、指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值; ②讨论出,也为下面研究性质时对底数的分类做准备。】 给出明确定义:一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。 接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如,,。 【学情预设:学生可能只是关注指数是否是变量,而不考虑其它的。】 【设计意图 :加深学生对指数函数定义和呈现形式的理解。】 2.指数函数性质 ⑴提出两个问题(约3分钟) ①目前研究函数性质一般从哪些方面研究; 【设计意图:让
12、学生在研究指数函数时有明确的目标:函数三个要素(对应法则、定义域、值域、)和函数的基本性质(单调性、奇偶性、周期性)。】 ②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究? 可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考。 【设计意图:①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)不同的角度对函数进行研究; ②对学生进行数学思想
13、方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透。】 ⑵分组活动,合作学习(约8分钟) 师:好,下面我们就从图象和解析式这两个不同的角度对指数函数进行研究。 ①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数; ②每一大组再分为若干合作小组(建议4人一小组); ③每组都将研究所得到的结论或成果写出来以便交流。 【学情预设:考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导。】 【设计意图:通过自主探索、合作学习不仅让学生充当学习的主人更可加深对所得到结论的理解。】 ⑶交流、总结(约
14、10~12分钟) 师:下面我们开一个成果展示会! 教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。 教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析。这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其它性质? 师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的意外收获呢?(如过定点(0,1),与的图象关于y轴对称) 【学情预设: ①首先选一从解析式的角度研究的小组汇报; ②对于从图象的角度研究的,可先选没对底数进行分类的小组汇报; ③问其它小组有
15、没不同的看法,补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化。】 【设计意图: ①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以也应该从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的。 ②让学生上台汇报研究成果,让学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养; ③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题使该难
16、点的突破显得自然。】 师:从图象入手我们很容易看出函数的单调性、奇偶性、以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到。 教师通过几何画板中改变参数的值,追踪的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律。 师生共同总结指数函数的图象和性质,教师可以边总结边板书。 图 象 定义域 R 值 域 性 质 过定点(0,1) 非奇非偶 在R上是减函数 在R上是增函数 (三)巩固训练、提升总结(约8分钟) 1.例:已知指数函数
17、的图象经过点,求的值。 解:因为的图象经过点,所以 即,解得,于是。 所以。 【设计意图:通过本题加深学生对指数函数的理解。】 师:根据本题,你能说出确定一个指数函数需要什么条件吗? 师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了。 【设计意图:让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想。】 2.练习:⑴在同一平面直角坐标系中画出和的大致图象,并说出这两个函数的性质; ⑵求下列函数的定义域:①,②。 3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获? 【学情预设:学生可能只是把指数函数
18、的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数。】 【设计意图:①让学生再一次复习对函数的研究方法(可以从也应该从多个角度进行),让学生体会本课的研究方法,以便能将其迁移到其他函数的研究中去。 ②总结本节课中所用到的数学思想方法。 ③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通。】 4.作业:课本96页习题 A组第2题,B组第3题 八、教学反思 1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。 2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。 3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉得运用这些数学思想方法去分析、思考问题。 附:板书设计






