ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:365KB ,
资源ID:9380888      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9380888.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(八年级一次函数与四边形(有答案).doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级一次函数与四边形(有答案).doc

1、八年级一次函数与四边形测试 一、解答题 1.(2011•舟山)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH. (1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明); (2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°), ①试用含α的代数式表示∠HAE; ②求证:HE=HG; ③四边形EFGH是什么四边形?并说明理由.

2、 2.(本小题满分8分)在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连结EG、CG,如图(1),易证 EG=CG且EG⊥CG. (1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和 位置关系?请直接写出你的猜想. (2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系 和位置关系?请写出你的猜想,并加以证明. 3.(2011•北京)在▱ABCD中,∠BAD的平分线交直线BC

3、于点E,交直线DC于点F. (1)在图1中证明CE=CF; (2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数; (3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数. 4..如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。 (1)求点B的坐标; (2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值; (3)是否存在点P,使得以A、O、Q、B为顶

4、点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。 5.已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG. (1)说明:△BCE≌△DCF; (2)OG与BF有什么数量关系?说明你的结论; (3)若BC·BD=,求正方形ABCD的面积. 6.如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C. (1)若直线AB解析式为, ①求点C的

5、坐标; ②求△OAC的面积. A B y O C x 图1 如图2,作的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由. 图2 A P Q B y O C x E N 7.如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H。 (1)求

6、直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设的面积为,点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); 8.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的 延长线交线段BC于点P,连AP、AG. (1)求证:△AOG≌△ADG; (2

7、求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由; (3)当∠1=∠2时,求直线PE的解析式. 参考答案 1.(1)答:四边形EFGH的形状是正方形. (2)解:①∠HAE=90°+a, 在平行四边形ABCD中AB∥CD, ∴∠BAD=180°﹣∠ADC=180°﹣a, ∵△HAD和△EAB是等腰直角三角形, ∴∠HAD=∠EAB=45°, ∴∠HAE=360°﹣∠HAD﹣∠EAB﹣∠BAD=360°﹣45°﹣45°﹣(180°﹣a)=90°+a, 答:用含α的代数式表示∠HAE是90°+a. ②证明:∵△AEB和△DGC是等腰直角三角形, ∴

8、AE=AB,DC=CD, 在平行四边形ABCD中,AB=CD, ∴AE=DG, ∵△HAD和△GDC是等腰直角三角形, ∴∠HDA=∠CDG=45°, ∴∠HDG=∠HDA+∠ADC+∠CDG=90°+a=∠HAE, ∵△HAD是等腰直角三角形, ∴HA=HD, ∴△HAE≌△HDC, ∴HE=HG. ③答:四边形EFGH是正方形, 理由是:由②同理可得:GH=GF,FG=FE, ∵HE=HG, ∴GH=GF=EF=HE, ∴四边形EFGH是菱形, ∵△HAE≌△HDG, ∴∠DHG=∠AHE, ∵∠AHD=∠AHG+∠DHG=90°, ∴∠EHG=∠AHG

9、∠AHE=90°, ∴四边形EFGH是正方形. 2. 解(1)EG=CG EG⊥CG------------------------------------------------------------(2分) (2)EG=CG EG⊥CG------------------------------------------------------------(2分) 证明:延长FE交DC延长线于M,连MG ∵∠AEM=90°,∠EBC=90°,∠BCM=90° ∴四边形BEMC是矩形. ∴BE=CM,∠EMC=90° 又∵BE=EF ∴EF=CM ∵∠

10、EMC=90°,FG=DG ∴MG=FD=FG ∵BC=EM ,BC=CD ∴EM=CD ∵EF=CM ∴FM=DM ∴∠F=45° 又FG=DG ∵∠CMG=∠EMC=45° ∴∠F=∠GMC ∴△GFE≌△GMC ∴EG=CG ,∠FGE=∠MGC------------------------------------------------------------------------(2分) ∵∠FMC=90°,MF=MD, FG=DG ∴MG⊥FD ∴∠FGE+∠EGM=90° ∴∠MGC+∠EGM=90° 即∠EGC=90° ∴EG⊥CG---

11、 (2分) 【答案】解:(1)如图1, ∵AF平分∠BAD, ∴∠BAF=∠DAF, ∵四边形ABCD是平行四边形, ∴AD∥BC,AB∥CD, ∴∠DAF=∠CEF,∠BAF=∠F, ∴∠CEF=∠F. ∴CE=CF. (2)∠BDG=45° (3)解:分别连接GB、GE、GC, ∵AD∥BC,∠ABC=120° ∴∠ECF=∠ABC=120° ∵FG∥CE且FG=CE, ∴四边形CEG

12、F是平行四边形, 由 (1)得CE=CF. ∴四边形CEGF是菱形, ∴GE=EC,① ∠GCF=∠GCE=∠ECF=60°, ∴△ECG是等边三角形. ∴EG=CG,∠GEC=∠EGC, ∴∠GEC=∠FGC, ∴∠BEG=∠DCG,② 由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB, ∴AB=BE, 在▱ABCD中,AB=DC, ∴BE=DC,③ 由①②③得△BEG≌△DCG, ∴BG=DG,∠1=∠2 ∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°, ∴∠BDG==60° 4.(1)过点B作BC⊥y轴于点C,∵A(0,2),△AOB为等边三角

13、形, ∴AB=OB=2,∠BAO=60°, ∴BC=,OC=AC=1, 即B() (2)当点P在x轴上运动(P不与O重合)时,不失一般性, ∵∠PAQ==∠OAB=60°, ∴∠PAO=∠QAB, 在△APO和△AQB中, ∵AP=AQ,∠PAO=∠QAB,AO=AB ∴△APO≌△AQB总成立, ∴∠ABQ=∠AOP=90°总成立, ∴当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值90°。 (3)由(2)可知,点Q总在过点B且与AB垂直的直线上, 可见AO与BQ不平行。 当点P在x轴负半轴上时,点Q在点B的下方, 此时,若AB∥OQ,四边形AOQB即是梯形

14、 当AB∥OQ时,∠BQO=90°,∠BOQ=∠ABO=60°。 又OB=OA=2,可求得BQ=, 由(2)可知,△APO≌△AQB,∴OP=BQ=, ∴此时P的坐标为()。 ②当点P在x轴正半轴上时,点Q在嗲牛B的上方, 此时,若AQ∥OB,四边形AOQB即是梯形, 当AQ∥OB时,∠ABQ=90°,∠QAB=∠ABO=60°。 又AB= 2,可求得BQ=, 由(2)可知,△APO≌△AQB,∴OP=BQ=, ∴此时P的坐标为()。 综上,P的坐标为()或()。 5.(1)因为四边形ABCD是正方形,所以BC=DC, ∠DCB=∠ DCF=90°,而CF=CE

15、则△BCE≌△DCF. (2) 由(1)知△BCE≌△DCF,所以∠CDF=∠CBE,且∠CEB=∠ DEG,则∠DGE=∠BCE=90°,又因为BE平分∠DBC,所以GF=GD.而O正方形ABCD的中心,则OG是△DBF的中位线,所以. (3)因为四边形ABCD是正方形,所以BC=DC,且∠DCB=90°.在中有,又因为 BC·BD=,所以 6.解:(1)①由题意, 解得所以C(4,4) ②把代入得,,所以A点坐标为(6,0), 所以. (2)由题意,在OC上截取OM=OP,连结MQ, ∵OP平分,∴, 又OQ=OQ,∴△POQ≌△MOQ(SAS), ∴PQ=MQ,∴AQ+PQ=AQ+MQ, 当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小. 即AQ+PQ存在最小值. ∵AB⊥OP,所以, ∴△AEO≌△CEO(ASA),∴OC=OA=4, ∵△OAC的面积为6,所以, ∴AQ+PQ存在最小值,最小值为3. 7.解:(1)直线AC的函数关系式为 (2) 8.(1)证明见解析(2)∠PAG =45°,PG=OG+BP,理由见解析(3)y=x﹣1

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服