ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:123.50KB ,
资源ID:9375775      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9375775.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(相识三角形判定.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

相识三角形判定.doc

1、 23.1相似三角形的判定(一) [教材分析] 本节内容是沪科版《新时代数学》九上第23章《相似形》第二节《相似三角形判定》的第一节课.是在学习了第一节相似多边形的概念、比例线段的有关概念及性质,并具备了有关三角形中位线和平行四边形知识后,研究三角形一边的平行线的判定定理.一方面,该定理是前面知识的延伸和全等三角形性质的拓展;另一方面,不仅可以直接用来证明有关三角形相似的问题,而且还是证明其他三种判定定理的主要根据,所以有时也把它叫做相似三角形判定定理的“预备定理”.通过本节课的学习,还可培养学生实验、猜想、证明、探索等能力,对掌握分析、比较、类比、转化等思想有重要作用.因此,这节课在本

2、章中有着举足轻重的地位. [教学目标] 知识与技能目标: (1)、理解相似三角形的概念,能正确地找出相似三角形的对应边和对应角. (2)、掌握相似三角形判定定理的“预备定理”. 过程与方法目标: (1)、通过探索相似三角形判定定理的“预备定理”的过程,培养学生的动手操作能力,观察、分析、猜想和归纳能力,渗透类比、转化的数学思想方法. (2)、利用相似三角形的判定定理的“预备定理”进行有关判断及计算,训练学生的灵活运用能力,提高表达能力和逻辑推理能力. 情感与态度目标: (1)通过实物演示和电化教学手段,把抽象问题直观化,激发学生学习的求知欲,感悟数学知识的奇妙无穷.

3、 (2)、通过主动探究、合作交流,在学习活动中体验获得成功的喜悦. [教学重点] 相似三角形判定定理的预备定理的探索 [教学难点] 相似三角形判定定理的预备定理的有关证明 [教学方法] 探究法 [教学媒体] 多媒体课件 直尺、 三角板 [教学过程] 一、课前准备 1、全等三角形的基础知识 2、三角形中位线定理及其证明方法 3、平行四边形的判定和性质 4、相似多边形的定义 5、比例的性质 二、复习引入 (一)复习 1、相似图形指的是什么? 2、什么叫做相似三角形? (二)引入 如图1,△ABC与△A’B’C’相似. 图1

4、 记作“△ABC∽△A’B’C’”, 读作“△ABC相似于△A’B’C’”. [注意]:两个三角形相似,用字母表示时,与全等一样,应把表示对应顶点的字母写在对应位置上,这样便于找出相似三角形的对应边和对应角. 对于△ABC ∽△A’B’C’,根据相似形的定义,应有 ∠A=∠A’, ∠B=∠B’ , ∠C=∠C’, ==. [问题]:将△ABC与△A’B’C’相似比记为k1,△A’B’C’与△ABC相似比记为k2,那么k1 与k2有什么关系? k1= k2能成立吗? 三、探索交流 (一)[探究]1、在△ABC中,D为AB的中点,如图2,过D点作DE∥BC 交AC

5、于点E,那么△ADE与△ABC相似吗? (1)“角” ∠BAC=∠DAE. ∵DB∥BC, ∴∠ADE=∠B, ∠AED=∠C. (2)“边” 要证明对应边的比相等,有哪些方法? Ⅰ、直接运用三角形中位线定理及其逆定理 图2 ∵DB∥BC,D为AB的中点, ∴E为AC的中点,即DE是△ABC的中位线. (三角形中位线定理的逆定理) ∴DE=BC.

6、三角形中位线定理) ∴===. ∴△ADE∽△ABC. Ⅱ、利用全等三角形和平行四边形知识 过点D作DF∥AC交BC于点F,如图3. 则△ADE≌△ABC,(ASA) 且四边形DFCE为平行四边形. (两组对边分别平行的四边形是平行四边形)           图3 ∴DE=BF=FC. ∴===. ∴△ADE∽△ABC. 2、当

7、D1、D2为AB的三等分点,如图4.过点D1、D2分别作 BC的平行线,交AC于点E1、E2,那么△ AD1E1、△AD2E2与△ABC相似吗? 由(1)知△AD1E1∽△AD2E2,下面只要证明△AD1E1与△ABC相似,关键是证 对应边的比相等. 过点D1、D2分别作AC的平行线,交BC于点F1、F2,设D1F1与D2F2相交于G点. 则△AD1E1≌△D1D2G≌D2BF2,(ASA) 且四边形D1F1CE1、D2F2CE2、D1GE2E1、D2F2F1G为平行四边形. (两组对边分别平行的四边形是平行四边形)

8、 图4 ∴D1E1=BF2=F2F1=F1C, ∴AE1=E1E2=E2C, ∴ ===. ∴△AD1E1∽△ABC. ∴△AD1E1∽△AD2E2∽△ABC. [思考]:上述证明过程较复杂,有较简单的证明方法吗? 过点D2作AC的平行线,交BC于点F2,如图5. 则四边形D2F2CE2为平行四边形, 且△AD1E1≌D2BF2,(ASA) ∴D2E2=F2C,D1E1=BF2. 由(1)知,D1E1=D2E2,AE1=AE2,               图5 ∴D1E1=BC,

9、AE1=AC. ∴===.    ∴△AD1E1∽△ABC. ∴△AD1E1∽△AD2E2∽△ABC. (二)[猜想]3、通过上面两个特例,可以猜测:当D为AB上任一点时,如图6,过D点作DE∥BC交AC于点E,都有△ADE与△ABC相似. 图6 (三)[归纳]定理 平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似. 这个定理可以证明,这里从略. 四、应用迁移 练习1、如图案,点D在△ABC 的边AB上,DE∥BC交AC于点E. 写出所有可能成立的比例式. 练习2、在第1题中,如果=,AC=8cm.求AE长.

10、 图7 五、整理反思 (一)小结 内容总结 思想归纳 二)反思 六、布置作业 课本第68页 练习 《基础训练》 思考题: 如图8、过△ABC的边AB上任意一点D, 作DE∥BC交AC于点E, 那么 =. 图8 板书设计 相似三角形 记号   读法 注意 24.2 相似

11、三角形的判定 探究1、在△ABC中,D为AB的中点 课本第68页 练习 定理 平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似. 探究2、当D1、D2为AB的三等分点 猜想 小结 作业 [教学反思] 新课程提出,学习目标应由“关注知识”转向“关注学生”,课堂设计应由“给出知识”转向“引起活动”得到“经历、体验”。在课堂中,教师也积极地创设出有利于学生主动参与的教学情境,激发学生的学习兴趣,充分地调动学生学习积极性,给学生留有思考和探索的余地,让学生能在独立思考与合作交流中解决学习中的问题. 这节课是教学公开课,课前让学生允分的预

12、习。在这种前提下,感觉教学过程进行非常顺利,学生学习也达到目标。这样使我感觉到:“先学后教”对学生自学能力的培养无疑有促进作用,教师在课堂教学中把引导学生学会学习放到教学的首位,教师在引导自学和发现、帮助学生克服学习困难上下工夫,这种先学后教的教学要求有效地制约了习惯于“满堂灌”的教师,这对贯彻“以学生为主体”的教学理念是十分重要的。这节课在要培养学生的数学探索能力方面做了有益的尝试,探索的过程实质上是一个不断提出设想、验证设想、修正和发展设想的过程。在数学中,它表现在提出数学问题,探求数学结论,探索解决途径,寻找解题规律等一系列有意义的发现活动中,而数学探索能力就集中表现为提出设想和进行转换的本领。教学中,激发学生的学习兴趣,使学生处于探索未知世界的主动地位;在具体教学中要善于引导学生推敲关键性的词句,使学生学会“引申”所学的知识. 课堂教学要充分张扬教师、学生的教学个性。教学要有统一的要求,但无须也不该要统一的方法。教育的最高境界应该是教无定法,学无定法。绚丽多姿的课堂需要个性飞扬的教师,教学管理者应鼓励教师在教学方法、教学技巧、教学手段上标新立异。 - 4 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服