ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:46.50KB ,
资源ID:9375764      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9375764.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(《二次函数》教学设计方案.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《二次函数》教学设计方案.doc

1、《二次函数》第一课时教学方案 一、教学目标: 知识技能: 1.探索并归纳二次函数的定义; 2.能够表示简单变量之间的二次函数关系. 数学思考: 1.感悟新旧知识间的关系,让学生更深地体会数学中的类比思想方法; 2.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系. 解决问题: 1.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系; 2. 能够利用尝试求值的方法解决实际问题.进一步体会数学与生活的联系,增强用数学意识。 情感态度: 1.把数学问题和实际问题相联系,从学生感兴趣的问题入手,能使学生

2、积极参与数学学习活动,对数学有好奇心和求知欲; 2.使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用; 3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程, 培养大家的合作意识. 二、教学重点、难点: 教学重点: 1.经历探索和表示二次函数关系的过程,获得二次函数的定义。 2.能够表示简单变量之间的二次函数关系. 教学难点: 经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验. 一、 教学方法及教学思路: 利用课件,图片,视频等,来引导学生对问题的思考,并逐步掌握解决问题的关键

3、本课的设计内容分为以下几个部分: 1.提出问题,导入新课; 2.合作交流,形成概念; 3.运用新知,解决问题; 4.巩固练习,深化知识; 5.归纳小结,布置作业. 教学过程: 一、提出问题,导入新课. 1.回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的?图象形状各是什么? 2.学生观察一段投篮的导入视频. 教师提出问题:投篮球时篮球运行的路线是什么曲线?这种曲线的形状是怎样的?是否象以前学过的函数图象?能否用新的函数关系式来表示?怎样计算篮球达到最高点时的高度?这将在本章——二次函数中学习. 3、你能举出一些生活中类似的曲线吗? 二、合作交流,

4、形成概念. 1.列式表示下面函数关系. 问题1: 正方体的六个面是全等的正方形,如果正方形 的棱长为x,表面积为y,写出y与x的关系. 问题2: n边形的对角线数d与边数n之间有怎样的关系? 问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示? 活动中教师关注: (1)学生参与小组合作讨论后,能否明白题意,写出相应关系式. (2)问题3中可先分析一年后的产量,再得出两年后的产量. 2.教师引导学生观察,分析上面三个函数关系式的共同点. 学生小

5、组交流、讨论得出结论,它们的共同点: (1) 等式的左边为函数,等式的右边为自变量的二次式. (2)等式的右边可统一为“ax2+bx+c”的形式. 3.教师口述二次函数的定义并板书在黑板上:一般地,形如y=ax2+bx+c (a, b,c是常数,a≠0)的函数,叫二次函数. a为二次项系数,ax2叫做二次项;b为一次项系数,bx叫做一次项; c为常数项. 4.问题:函数y=ax²+bx+c,当a、b、c满足什么条件时, (1)它是二次函数?(2)它是一次函数? (3)它是正比例函数? 活动中教师应关注: (1)学生能否归纳、概括出这三个函数关系式的共同特点; (2)函数y=a

6、x2+bx+c中,a≠0是必要条件,切不可忽视.而b,c的值可以为任何实数.若b,c其一为0或均为0,上述函数的式子可以写成怎样?此时它们还是二次函数吗? (3) 定义是关于x的二次整式(切不可把“y=x2++3,当成二次函数) . 三、运用新知,解决问题 例1 下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项. (1) (2) (3) (4) y=3(x-1)²+1 (5)y=(x+3)²-x² (6) (7)s=3-2t² (8) (9) y=mx²+nx+p (m,n,p为常数)

7、 例2 已知函数, (1) m取什么值时,此函数是正比例函数? (2) m取什么值时,此函数是反比例函数? (3) m取什么值时,此函数是二次函数? 例3 矩形的长和宽分别是3米和2米,把它的长增加x米,宽增加若干米,使周长成为原来的2倍,设边长增加后,矩形的面积是S,求S与x之间的函数关系式. 四、巩固练习,深化知识. 1.一个圆柱的高等于底面半径,写出它的表面积s 与半径 r 之间的关系式. 2. n支球队参加比赛,每两队之间进行一场比赛,写出比赛的场次数 m与球队数 n 之间的关系式. 3. m为何值时,函数是以x为自变量的二

8、次函数? 五、归纳小结,布置作业. 1.小结 这节课我们主要学习了二次函数,你有哪些收获?学生回答. 2.布置作业 必做题:教科书 第14页习题26.1第1、2题 选做题:教科书 第31页7题. 附板书设计: 1.定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数.其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项. 2.y=ax²+bx+c(a,b,c是常数,a≠0)的几种不同表示形式: (1)y=ax²(a≠0,b=0,c=0,) . (2)y=ax²+c(a≠0,b=0,c≠0) . (3)y=ax²+bx(a≠0,b≠0,c=0) .

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服