ImageVerifierCode 换一换
格式:PPTX , 页数:30 ,大小:7.95MB ,
资源ID:935771      下载积分:11 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/935771.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(超快光学第04章脉冲.pptx)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

超快光学第04章脉冲.pptx

1、Ultrashort Laser Pulses IIMore second-order phaseHigher-order spectral phase distortionsRelative importance of spectrum and spectral phasePulse and spectral widthsTime-bandwidth productProf.Rick TrebinoGeorgia Techwww.frog.gatech.eduFrequency-domain phase expansionRecall the Taylor series for():As i

2、n the time domain,only the first few terms are typically required to describe well-behaved pulses.Of course,well consider badly behaved pulses,which have higher-order terms in().whereis the group delay.is called the“group-delay dispersion.”The Fourier transformof a chirped pulseWriting a linearly ch

3、irped Gaussian pulse as:or:Fourier-Transforming yields:Rationalizing the denominator and separating the real and imag parts:A Gaussian witha complex width!A chirped Gaussian pulseFourier-Transforms to itself!whereneglecting the negative-frequency term due to the c.c.But when the pulse is long(a 0):w

4、hich is the inverse of the instantaneous frequency vs.time.The group delay vs.w w for a chirped pulseThe group delay of a wave is the derivative of the spectral phase:So:For a linearly chirped Gaussian pulse,the spectral phase is:And the delay vs.frequency is linear.This is not the inverse of the in

5、stantaneous frequency,which is:2nd-order phase:positive linear chirpNumerical example:Gaussian-intensity pulse w/positive linear chirp,2=14.5 rad fs2.Here the quadratic phase has stretched what would have been a 3-fs pulse(given the spectrum)to a 13.9-fs one.2nd-order phase:negative linear chirpNume

6、rical example:Gaussian-intensity pulse w/negative linear chirp,2=14.5 rad fs2.As with positive chirp,the quadratic phase has stretched what would have been a 3-fs pulse(given the spectrum)to a 13.9-fs one.The frequency of a light wave can also vary nonlinearly with time.This is the electric field of

7、 aGaussian pulse whose fre-quency varies quadraticallywith time:This light wave has the expression:Arbitrarily complex frequency-vs.-time behavior is possible.But we usually describe phase distortions in the frequency domain.Nonlinearly chirped pulsesE-field vs.timeE(t)3rd-order spectral phase:quadr

8、atic chirpLonger and shorter wavelengths coincide in time and interfere(beat).Trailing satellite pulses in time indicate positive spectral cubic phase,and leading ones indicate negative spectral cubic phase.S()tg()()Spectrum and spectral phase400 500 600 700Because were plotting vs.wavelength(not fr

9、equency),theres a minus sign in the group delay,so the plot is correct.3rd-order spectral phase:quadratic chirpNumerical example:Gaussian spectrum and positive cubic spectral phase,with 3=750 rad fs3 Trailing satellite pulses in time indicate positive spectral cubic phase.Negative 3rd-order spectral

10、 phaseAnother numerical example:Gaussian spectrum and negative cubic spectral phase,with 3=750 rad fs3 Leading satellite pulses in time indicate negative spectral cubic phase.4th-order spectral phaseNumerical example:Gaussian spectrum and positive quartic spectral phase,4=5000 rad fs4.Leading and tr

11、ailing wings in time indicate quartic phase.Higher-frequencies in the trailing wing mean positive quartic phase.Negative 4th-order spectral phaseNumerical example:Gaussian spectrum and negative quartic spectral phase,4=5000 rad fs4.Leading and trailing wings in time indicate quartic phase.Higher-fre

12、quencies in the leading wing mean negative quartic phase.5th-order spectral phaseNumerical example:Gaussian spectrum and positive quintic spectral phase,5=4.4104 rad fs5.An oscillatory trailing wing in time indicates positive quintic phase.Negative 5th-order spectral phaseNumerical example:Gaussian

13、spectrum and negative quintic spectral phase,5=4.4104 rad fs5.An oscillatory leading wing in time indicates negative quintic phase.The relative importance of intensity and phasePhotographs of my wife Linda and me:Composite photograph made using the spectral intensity of Lindas photo and the spectral

14、 phase of mine(and inverse-Fourier-transforming)Composite photograph made using the spectral intensity of my photo and the spectral phase of Lindas(and inverse-Fourier-transforming)The spectral phase is more important for determining the intensity!Pulse propagationWhat happens to a pulse as it propa

15、gates through a medium?Always model(linear)propagation in the frequency domain.Also,you must know the entire field(i.e.,the intensity and phase)to do so.In the time domain,propagation is a convolutionmuch harder.Pulse propagation(continued)using k=/c:Separating out the spectrum and spectral phase:Re

16、writing this expression:The pulse lengthThere are many definitions of the width or length of a wave or pulse.The effective width is the width of a rectangle whose height and area are the same as those of the pulse.Effective width Area/height:Advantage:Its easy to understand.Disadvantages:The Abs val

17、ue is inconvenient.We must integrate to .tf(0)0DtefftDt(Abs value is unnecessary for intensity.)The rms pulse widthThe root-mean-squared width or rms width:Advantages:Integrals are often easy to do analytically.Disadvantages:It weights wings even more heavily,so its difficult to use for experiments,

18、which cant scan to .tDtThe rms width is the normalized second-order moment.The Full-Width-Half-MaximumFull-width-half-maximum is the distance between the half-maximum points.Advantages:Experimentally easy.Disadvantages:It ignores satellite pulses with heights 49.99%of the peak!Also:we can define the

19、se widths in terms of f(t)or of its intensity,|f(t)|2.Define spectral widths(D Dw w)similarly in the frequency domain(t w w).tDtFWHM10.5tDtFWHMThe Uncertainty PrincipleThe Uncertainty Principle says that the product of a functions widthsin the time domain(Dt)and the frequency domain(D)has a minimum.

20、Combining results:or:Use effective widths assuming f(t)and F()peak at 0:1Other width definitions yield slightly different numbers.For a given wave,the product of the time-domain width(Dt)and the frequency-domain width(Dn)is the Time-Bandwidth Product(TBP)Dn Dt TBPA pulses TBP will always be greater

21、than the theoretical minimumgiven by the Uncertainty Principle(for the appropriate width definition).The TBP is a measure of how complex a wave or pulse is.Even though every pulses time-domain and frequency-domain functions are related by the Fourier Transform,a wave whose TBP isthe theoretical mini

22、mum is called Fourier-Transform Limited.The Time-Bandwidth ProductThe coherence time(tc=1/Dn)indicates the smallest temporal structure of the pulse.In terms of the coherence time:TBP =Dn Dt =Dt /tc =about how many spikes are in the pulseA similar argument can be made in the frequency domain,where th

23、eTBP is the ratio of the spectral width to the width of the smallestspectral structure.The Time-Bandwidth Product is a measure of the pulse complexity.DttcI(t)A complicated pulsetimeTemporal and spectral shapes and TBPs of simple ultrashort pulsesFWHMcyclesDiels and Rudolph,Femtosecond PhenomenaTime

24、Bandwidth ProductFor the angular frequency and different definitions of the widths:TBPrms 0.5TBPeff 3.14 TBPHW1/e 1TBPFWHM 2.76 Divide by 2p for the cyclical frequency Dtrms Dnrms,etc.Numerical example:A transform-limited pulse:A Gaussian-intensity pulse with constant phase and minimal TBP.Notice t

25、hat this definition yields an uncertainty product of p,not 2p;this is because weve used the intensity and spectrum here,not the fields.Time-Bandwidth ProductFor the angular frequency and different definitions of the widths:TBPrms=6.09TBPeff=4.02TBPHW1/e=0.82TBPFWHM=2.57 Divide by 2p for Dtrms Dnrms,

26、etc.Numerical example:A variable-phase,variable-intensity pulse with a fairly small TBP.Time-Bandwidth ProductFor the angular frequency and different definitions of the widths:TBPrms=32.9TBPeff=10.7TBPHW1/e=35.2TBPFWHM=116 Divide by 2p for Dtrms Dnrms,etc.Numerical example:A variable-phase,variable-

27、intensity pulse with a larger TBP.A linearly chirped pulse with no structure can also have a large time-bandwidth product.For the angular frequency and different definitions of the widths:TBPrms=5.65TBPeff=35.5TBPHW1/e=11.3TBPFWHM=31.3 Divide by 2p for Dtrms Dnrms,etc.Numerical example:A highly chir

28、ped,relatively long Gaussian-intensity pulse with a large TBP.The shortest pulse for a given spectrum has a constant spectral phase.We can write the pulse width in a way that illustrates the relative contributions to it by the spectrum and spectral phase.If B()=S(),then the temporal width,Dtrms,is g

29、iven by:Notice that variations in the spectral phase can only increase the pulse width.Contribution due to variations in the spectrumContribution due to variations in the spectral phaseNote:this result assumes that the mean group delay has been subtracted from.That is,the pulse is cen-tered at tgr=0

30、The narrowest spectrum for a given intensity has a constant phase.We can also write the spectral width in a way that illustrates the relative contributions to it by the intensity and phase.If A(t)=I(t),then the spectral width,Drms,is given by:Notice that variations in the phase can only increase the spectral width.Contribution due to variations in the intensityContribution due to variations in the phase

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服