ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:120.50KB ,
资源ID:9343624      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9343624.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(七年级上册数学思想方法.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级上册数学思想方法.doc

1、七年级上册数学思想方法 数学思想是数学中的“软件”,它蕴含于数学学习的全过程.只有掌握了数学思想,才能使数学更易于理解和记忆,才能真正地学好新的知识,将知识转化为能力. 在七年级上册中,就蕴含着丰富的数学思想,举例说明如下. 一、归纳思想 归纳就是从特殊、个别的事例推出一般规律的过程,归纳的过程就是创新的过程,这对解决复杂问题能起到事半功倍的效果,这种思想方法常用于探索规律问题. 例1 观察下列式子,探索其规律并填空. ;;;;…… 请你计算:_________. 析解:观察上述几个式子,你会发现等式左边是奇数和差的形式,右边为两数的积,积中第一个因数是-1的指数次方的形式,其

2、指数比左边的项数多1,第二个因数就为左边的项数, 因而. 点评:探究规律问题是创新思维的重要体现,从几个简单的、个别的、特殊的情况去研究、探索、归纳出一般的规律和性质;反过来,应用一般的规律和性质可去验证特殊的问题,这是数学中经常使用的方法. 二、用字母表示数的思想 用字母表示数是代数的一个重要特点,也是数学中重要的思想方法. 用字母表示数,既能高度概括数学问题的本质规律,又能使数学问题的表达变得简单明了,从而给计算和研究带来方便. 例2 计算:. 析解:本题无法直接进行计算,观察发现四个括号内的分数和具有一定的联系,若把括号内的分数和用字母表示,则把数的运算变成了式的运算. 可

3、设,,则.所以原式=. 点评:用字母代替常数,把繁难的数字计算问题转化为简单的整式的运算问题,简化了解题过程,从而达到了化繁为简、化难为易的效果. 三、数形结合思想 所谓数形结合就是根据数学问题的条件和结论之间的内在联系,既分清其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决. 例3 如图3,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数对应的点在M与N之间,数对应的点在P与R之间,若,则原点可能是( ). A.M或R B.N或P C.M或N D.P或R

4、 析解:若原点为M点,由题意知,,故有可能使;若原点为N点,由题意知,,故不可能使. 同理可得,P点可以是原点,点R不可能为原点.故选(A). 点评:有理性的排除是解决问题的关键. 本题利用数形结合思想,先假设某种情况正确,经过推理得结论(对或错),当然本题也可以利用特殊值来解决. 四、转化思想 其实质就是将所要解决的问题转化为一个较易解决或已经解决的问题.具体地说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“复杂”问题转化为“简单”问题.它是初中数学中最重要、最为常见的思想方法. 例4 对于任意两个有理数对和,规定:当时,有;运算“”为:;运算“”为:.设、

5、都是有理数,若,则. 析解:本题通过“定义新运算符号”,增加了问题的神秘色彩.解答本题的关键是正确理解新定义下的数对的运算规则,其实质是按照对应关系把数对中的数进行运算即可. 由于,所以.根据题意,有,所以,.解得,. 又因为, 所以.故填. 点评:解新定义运算的关键是理解新运算符号的含义,按照新定义的运算规律、法则,把陌生的问题转化为熟悉的问题进行解决. 可见,数学思想是数学知识的基础和精髓,而数学方法则使数学思想得以具体实施,二着相辅相成. 虽然课本上没有专门的章节介绍数学思想方法,但是它隐含在概念的形成、公式的推导、法则的论证及习题的解决等过程中. 因而同学们要用数学思想方法武装自己,使自己真正成为数学的主人.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服