ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:23.56KB ,
资源ID:9288611      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9288611.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(《522平行线的判定》教案.docx)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《522平行线的判定》教案.docx

1、课题 《5.2.2平行线的判定》教案 类别:初中 学科:七年级数学(下册) 姓名:刘勇 学校:开原市靠山中学 【教案背景】 1、教学对象:七年级学生 2、学科:七年级数学下册(新人教版) 3、课时:第1课时 4、学生情况:目前,虽然我校学生的数学水平参差不齐,数学抽象思维能力较差,在学习本节课时可能会有一定的困难,但是学生的个性活泼,学习积极性高,而且在此之前学生已经学完“三线八角”,初步了解了平行线的概念、平行线的性质及用三角板和直尺画平行线的方法,是具备学好这节课的基础的。本学期学生初步接触推理证明,逐步养成言之有据的习惯。 【教学课题】 数学七年级下册(新

2、人教版)5.2.2平行线的判定,课型:新授课,课时第一节 【教学内容分析】 "平行线的判定"是第五章相交线与平行线第二节内容,本节内容安排三个课时,这一课时是本节内容的第一课时,在这一课时里,通过让学生观察两条直线被第三条直线所截的模型,想象有转动的过程中存在有相交的情况,从而得出概念及平行公理,那么本课时教学内容的设计意图主要是让学生在观察、想象两条线存在平行关系的基础上,进一步了解两直线平行的有关判定方法。本课设计的主要思路是通过让学生观察、实践、操作等方式,使学生经历实践、分析、归纳等过程,从而获得相关知识,增强学生数学实践体验。 一、教学目标 1.经历观察、操作

3、想象、推理、交流等活动,进一步发展空间观念,培养推理能力和有条理的表达能力。 2.经历探究直线平行的判定方法的过程;掌握直线平行的判定方法,领悟归纳和转化的数学思想。 二、教学重难点 教学重点:探索并掌握直线平行的判定方法。 教学难点:直线平行的判定方法的应用。 三、教学方法 利用问题情境,让学生在解决问题的过程中复习已有知识,同时这学习新的知识做好准备,在教学中引导学生通过自主探索、合作交流等方式获得新知识、新方法。在解决问题的过程中多方面尝试,丰富学生的解题策略,教师的适时点拨,精炼概括,使学生的思维逐渐清晰条理,帮助学生积累经验、训练技能。 四、教学过程 (一)复习旧知

4、引入新课 1. 如图,已知四条直线AB、AC、DE、FG, _ 7 _ 6 _ 5 _ 2 _ 4 _ 8 _ 3 _ 1 _ G _ F _ E _ D _ C _ B _ A (1)∠1与∠2是直线_____和直线_____被直线_____所截而成的____角。 (2)∠3与∠2是直线_____和直线_____被直线_____所截而成的____角。 (3)∠5与∠6是直线_____和直线_____被直线_____所截而成的____角。 (4)∠4与∠7是直线_____和直线_____被直线_____所截而成

5、的_____角。 (5)∠8与∠2是直线_____和直线_____被直线_____所截而成的_____角。 2.a∥b,b∥c,那么_________,理由是________________________________. 通过上节课的学习,我们知道根据平行公理的推论可以判定两直线平行,除此之外,还有哪些方法可以判定两直线平行呢?这是我们这节课要研究的问题. (二)探索新知 1. 平行线的判定方法1 问题1:如右图,在用直尺和三角板画平行线的过程中,三角板起着什么样的作用? 结论结果:三角板的作用是使∠PHF和∠BGF相等。 问题2:这两个角具有什么样的关系?我们是否得

6、到一个判定两直线平行的方法? 讨论结果:平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 简单记为:同位角相等,两条直线平行。 用符号语言表达两直线平行的判定方法1: 如果∠1=∠2,那么AB∥CD. 问题3:木工用角尺画平行线的过程中,试说出用角尺画平行线的道理(课本14页图5.2—7) 2. 平行线的判定方法2 问题4.在判定方法1的图中,如果∠PHF=∠HGA,那么AB∥CD,为什么? 分析:目前我们掌握了两种判定两直线平行的方法,但问题的条件都不符合,而根据问题情境,可以利用判定方法1同位角相等,两直线平行来解决问题,这就需要将问题中的

7、内错角相等转化为同位角相等。 可以先放手让学生尝试独立解决,后小组交流 活动:因为∠PHF=∠HGA,而∠BGF=∠HGA(对顶角相等) 所以∠1=∠2,即同位角相等. 因此AB∥CD 讨论结果:归纳判定两条直线平行的判定方法2: 两条直线被第三条直线所截,如果内错角等,那么这两条直线平行。 简单记为:内错角相等,两条直线平行. 用符号语言表达两直线平行的判定方法1: 如果∠PHF=∠HGA, 那么AB∥CD. 3. 平行线的判定方法3 问题5.同旁内角在数量上满足什么关系时,两直线平行? 活动:如图 (1)学生根据图象先排除相等当∠4是钝角时,∠2是锐角才有可能使

8、a∥b,进一步观察、猜想:如果同旁内角互补,两条直线平行,即如果∠2+∠4=180°,那么a∥b. (2)学生利用平行线的判定方法1或方法2来说明猜想的正确性. 教师根据学生说理,再准确板书: 因为∠2+∠4=180°,而∠4+∠1=180°,根据同角的补角相等,所以∠2=∠1,即同位角相等,从而a∥b. 讨论结果: 两条线的判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。 简单记为:同旁内角互补,两条直线平行. 用符号语言表达:如果∠2+∠4=180°,那么a∥b. (三)即时小结 我们在遇到一个新问题时,常常将未学的知识转化为已知的(或

9、已解决的)问题,在这节课中,平行线的判定方法2、3就是借助于对顶角相等或邻补角互补,将内错角相等转化为同位角相等,或将同旁内角互补转化为同位角相等而得出的,这种将未知转化为已知的方法是数学中的一种重要方法,也是我们今后推理常用的方法. (四)应用举例 例题 在同一平面内.如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么? 分析:垂直与直角总联系在一起,至于要判定两条直线是否平行,先考虑学过哪些判定平行线的方法.题中的条件与哪种判定方法的条件相同. 学生先口述判断与理由,教师纠正并规范板书两步推理过程. 解:这两条直线平行.理由如下:如图 因为b⊥a,c⊥a, 所

10、以∠1=∠2=90° 从而b∥c (同位角相等,两直线平行) 点评:这个道理过程有两个因为……所以……,第一个“因为”“所以”是根据垂直定义,第二个只写出“所以”的内容b∥c,中间省略一个“因为” 的内容就是第一个“所以”中的∠1=∠2。这样处理是使说理表达更简练,第二个“因为”“所以”是根据同位角相等,两直线平行。 例题讲解后,提出问题:你还能利用其他方法说明b∥c吗? 教师鼓励学生模仿课本的方法用判定2和判定3写出理由。 如果∠1、∠2不是同位角,也不是内错角、同旁内角,如图: 教师启发学生用化归思想将它转化为已知问题来解决,并且有条理地陈述理由。 (五)巩固训练,熟练

11、技能 1、判断题 (1)两条直线被第三条直线所截,如果同位角相等,那么内错角出相等。 (2)两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等。 2、课本P15—17练习. (六)课堂小结 1.本节主要学习了平行线的三种判定方法. 2.用到的主要思想方法是转化思想. 3.注意的问题是平行线的判定方法的灵活应用. 五、布置作业 课本习题5.2 第2、4、5 题 六、板书设计 同位角相等,两条直线平行 例题讲解 内错角相等,两条直线平行 同旁内角互补,两条直线平行 如果∠1=∠2,那么AB∥CD. 七、教学反思

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服