ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:484KB ,
资源ID:928551      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/928551.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(外文翻译研究利用差动齿轮系实现机械混合压力.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

外文翻译研究利用差动齿轮系实现机械混合压力.doc

1、中文4340字 出处:Science in China Series E: Technological Sciences February 2007, Volume 50, Issue 1, pp 69-80 Study of utilizing differential gear train to achieve hybrid mechanism of mechanical press HE YuPeng1†, ZHAO ShengDun2, ZOU Jun2 & ZHANG ZhiYuan2 1 School of Mechanical Engineering, Nanjing U

2、niversity of Science & Technology, Nanjing 210094, China; 2 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China The problems of hybrid input of mechanical press are studied in this paper, with differential gear train as transmission mechanism. It is proposed that “adju

3、stable-speed amplitude” or “differential-speed ratio” is the important parameters for the hybrid input mechanism. It not only defines the amplitude of the adjustable speed, but also determines the ratio of the power of the servomotor to the power of the conventional motor. The calculating equations

4、 of the ratio of transmission in all axes, the power of two motors, and the working load distribution are deduced. The two kinds of driving schemes are put forward that the servomotor and the conventional motor simultaneously drive and the servomotor and the conventional motor separately drive. The

5、calculating results demonstrate that the latter scheme can use much lower power of the servomotor, so this scheme makes manufacture and use cost much lower. The latter scheme proposes a feasible way to apply the hybrid mechanism of mechanical press in practice engineering. mechanical press, hybrid

6、mechanism, differential gear train, adjustable-speed 1 Introduction At present there are many research papers about the hybrid mechanism of mechanical press, and it has become a hot research topic. The hybrid mechanism is a mechanism with 2-degree-of freedom (also called differential speed mecha

7、nism), and when two independent motions are input at the same time, the output that can satisfy some motion requirements is obtained through the motion composition of the mechanism. The hybrid mechanism is also called controllable mechanism, or hybrid machine. The purpose of research on hybrid me

8、chanism of mechanical press is using conventional motor with big power carrying flywheel to finish stamping work pieces; and uses ser —vomotor with low power to adjust the slider speed. The advantages of the hybrid mechanism applied in the mechanical press are that it not only can reduce much lower

9、manufacturing cost than servo press, but also has a flexible working velocity of slider[1]. So the mechanical press of hybrid mechanism arouses many researchers’ interest in working on it; and these studies are mainly focused on the multi-bar hybrid mechanism. Du and Guo[1, 2] have comprehensively d

10、iscussed the seven-bar hybrid mechanism of mechanical press, including the feasible conditions of composition of the linkage mechanism, the slider motion analysis, and the torque and power distribution between the two motors as well as the optimal design. The trajectory planning based on polynomial

11、interpolation is also investigated, and the computer simulation shows that the result is indeed attractive. In addition, Meng[3] has also investigated the kinematical analysis of the seven-bar mechanism, and the optimal design has been completed based on the minimum power of the servomotor motor, an

12、d Meng has proposed that the hybrid mechanism is a research direction of the mechanical press. Tokuz[4] first put forward of the hybrid mechanism and analyzed the velocity synthesis by using the differential gear train. His experiment confirmed the feasibility of his conception. The concepts of th

13、e adjustable-speed amplitude and differential-speed ratio are not mentioned in their works, and the relationship between the velocity variation and the power of the two motors were not clearly given[5―8]. But these concepts are very important and absolutely necessary for the hybrid mechanism to sele

14、ct the two motors’ power and determine the working load distribution between conventional motor and the servomotor. In refs. [1―3] they used linkage mechanism to implement the hybrid input of mechanical press. The method is very complex because the change of the length and position of the each bar i

15、n linkage mechanism will have an effect on the motion of the slide of the mechanical press. So some principal problems are usually ignored in research hybrid mechanism course, and the research results don not always coincide with the practice engineering conditions[9―11]. The gear differential train

16、 has two freedoms, and the ratios of transmission between arbitrary two axes are a constant. In order to simplify the mechanical model and make the problems much projected, the differential gear train is used as transmission mechanism to study the hybrid problems of the mechanical press in this pape

17、r. This paper addresses the relationship between the adjustable-speed amplitude and the power of the two motors, the working load distribution between the two motors, and puts forward two drive schemes of the conventional motor and the servomotor simultaneously working, and two motors separately wor

18、king. With the 200-ton mechanical press as the engineering background, a drive system of the hybrid mechanism of the mechanical press is designed, and the feasibility of the two drive schemes in mechanical press is analyzed. 2 The principle of the hybrid mechanism The working principle of the hybr

19、id mechanism of the mechanical press with differential gear train is illustrated in Figure 1. The system consists of conventional motor (also called AC machine with constant speed), servomotor, reducing unit I, reducing unit II, differential gear train, and crank slide mechanism. The output axis of

20、the differential gear train is connected with the crankshaft of the crank slide mechanism. One of the two input axes links the conventional motor through the reducing unit І; the other input axis links the servomotor through the reducing unit II. Therefore the motion of the crankshaft is completely

21、controlled by the motions of the conventional motor and the servomotor. The reducing unit І and the reducing unit II are respectively installed between the two motors and the differential gear unit in the way of serial in order to bear a part of reducing velocity task of the all transmission system,

22、 because too big drive ratio of the differential gear train will make its driving efficiency decreased. The angular velocity of the conventional motor is constant, so its price is cheaper. The angular velocity of the servomotor is adjustable, so its price is expensive. In the system of the hybrid me

23、chanism the constant speed of the output axis is provided by high power conventional motor; and the servomotor provides its adjustable speed. Therefore, in this way, it not only makes the output motion of the crankshaft of the mechanical press flexible, but also avoids using high power servomotor. H

24、ence it could save both the machine manufacturing costs and the machine operating costs. Figure 1 Working principle of hybrid mechanism of differential gear train. 3 The velocity characteristics of the mechanical press slide The work of the mechanical press presents the regularity of the period

25、ic change[12]. The displacement and velocity changes of the mechanical press slide in an ideal work circulation are illustrated in the Figure 2. The slide starts to move from top dead center to the working start point at high velocity (called quick feeding stage). When the slide of mechanical press

26、 approaches the working point, its high velocity is shifted to slow velocity and then it begins to stamp work piece at low velocity (called low working stage). The low velocity of the slide is to avoid great impact on the die, and benefit the plastic shaping of the work piece. After the slide finis

27、hes the stamping work and reaches the bottom dead center, the slide comes back at high velocity and stops at the top dead center (called quick back stage). Hence, the motion velocity of the mechanical press slide can be divided three kinds: high down velocity V1 , slow working velocity V2 , and high

28、 back velocity V3 . The velocity V1 and velocity V3 should be as possible as high and the velocity V2 should be slow and flexible in order to ensure high working times of the mechanical press per minute and satisfy the requirements of different technologies. Actually the mechanical press only works

29、in a very short course before the bottom dead center, and in the other courses it does not do work to the work piece. 4 The nomenclatures and equations of the hybrid mechanism 4.1 The relationship of the angular velocity in all axes There are three external axes in the differential gear train as

30、illustrated in Figure 1. In order to conveniently express the relationship of the three axes, the axis connected with the conventional motor is called axis 1, the axis connected with servomotor is called axis 2, and the axis connected with crankshaft is called axis 0. The angular velocities of th

31、e three axes are respectively expressed as n1 , n2 and n0 . The torques of the three axes are respectively expressed as M1 , M2 and M0 . Because there are two freedoms in the differential gear train, only the third axis is fixed, such that the drive ratio of the other two axes can be determined.

32、So the relationships of drive ratio and angular velocity of the three axes need to be expressed as the character with superscript and subscript. Figure 2 Ideal displacement cure of the slide. 4.1.1 The conventional motor’s influence on the output motion. When the servomotor stops, n2 = 0 , on

33、ly the angular velocity of the conventional motor affects the output angular velocity n0 . 4.1.2 The servomotor’s influence on the output motion. When the conventional motor stops, n1 = 0 , only the angular velocity of the servomotor affects the output angular velocity n0 , where 1 n0 represents

34、axis 0 angular velocity, and 1 i20 represents total drive ratio from axis 2 to axis 0 including differential gear train and reducing unit II when axis 1 (servomotor axis) is fixed. 4.1.3 The conventional motor’s and servomotor’s influence on the output motion. When the conventional motor and the

35、servomotor run at the same time through the composition of the differential gear train, the output velocity can be expressed as . Because the servomotor can run at arbitrary angular velocity between the zero and specific velocity in both positive and negative directions, n2 can be expressed as .wher

36、e K is the ratio of the actual angular velocity to the specific angular velocity of the servomotor; the value is arbitrary between −1 and +1, including zero. n2e is the specific angular velocity of the servomotor. 4.2 Adjustable-speed amplitude and differential-speed ratio 4.2.1 Adjustable-speed

37、amplitude. In order to correctly denote the variable velocity of the differential gear train of the hybrid mechanism, the concept of adjustable-speed amplitude is introduced. As shown in Figure 1, adjustable-speed amplitude is the ratio (or percentage) of absolute value of up and down adjustable a

38、mount to the base speed. In the differential gear train of the hybrid mechanism, the adjustable-speed amplitude equals the ratio value of axis 0 output speed of operating a single servomotor at the specific speed to axis 0 output speed of operating a single conventional motor[13]. In the differentia

39、l gear train of the hybrid mechanism, the adjustable-speed amplitude is the most basic and the most important technology parameter. It not only determines the matching relationship of the speed of the two input axes, but also decides the matching relationship of the installed capacity of the servomo

40、tor and the conventional motor 4.2.2 Differential-speed ratio. The differential-speed ratio is usually used to express adjustable speed technology performance in the differential gear train. It is an important technology parameter of the differential effect in the differential system. The differen

41、tial-speed ratio equals the reciprocal value of the adjustable-speed amplitude. It can be expressed as According to the fact that the angular velocity is in inverse proportion to its torque and that the same load is driven by conventional motor and servomotor, an equation expressed with the powers o

42、f the two motors can be deduced, where P1 is the power of the conventional motor, P1 = M1n1 . P2 is the power of the servomotor, P2 = M2n2e . 4.3 The working load power distribution Supposing that the working load power of the mechanical press is P0 , the power relationship between the convention

43、al motor, the servomotor and working load can be expressed as below: Figure 3 Physical sense of the adjustable-speed amplitude. From eqs. (9)―(11), the output powers of the conventional motor and the servomotor are determined by the value of factor K, which is actually equal to the change ratio

44、of angular velocity of the servomotor. Hence when the output angular velocity runs in different working region, the ratio of bearing load of the two motors is different, too. 4.3.1 The output axis running at the basic speed. When the output angular velocity of the servomotor equals zero, that is,

45、K = 0 , P2 = 0 , from eq. (9), we have .Here the conventional motor bears all the loading power. 4.3.2 The output axis running in the increasing speed region. The servomotor runs in the positive direction, 0≤K≤1 , and both P1 and P2 are positive values, so both the conventional motor and the serv

46、omotor bear a part of the working load. Thus the conventional motor bears 90.9%―100% working load and the servomotor bears only 0―9.1% working load. The value of the adjustable-speed and the differential-speed ratio deter-mine the load distribution between the two motors. 4.3.3 The output axis r

47、unning in the decreasing speed region. In the decreasing speed region, the servomotor runs in negative direction, and the range value of K is −1≤K≤0 . By eqs. (9) and (10), the P1 is positive, and the P2 is negative. The negative value of the servomotor power shows that the servomotor power is alre

48、ady the working resistance. Hence the conventional motor is not only doing work to the working load, but also doing work to the servomotor power, When the angular speed is in the region 0―n2e, the load of the conventional motor is Thus when the output angular speed is in the decreasing region, the c

49、onventional motor consumes more energy than in the other regions. The decrease of the output speed is at the price of consuming the servomotor input power. In order to save energy, the output angular speed should avoid or reduce running in the decreasing region. 4.4 The two drive schemes of the h

50、ybrid mechanism of the mechanical press According to eq. (3), the output angular velocity of the hybrid mechanism is equal to the reduced value of their sum of the angular velocities of both the conventional motor and the servomotor. As shown in Figure 1, the output angular velocity of the differ

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服