1、对我国第三产业的计量分析 学院:农生院 姓名:张祥 学号:222010326032041 摘要:近年来,第三产业成为我国GDP增长的主要推动力,该文从五个方面对第三产业的发展进行了深入的计量分析,得出第三产业的发展主要跟交通运输、仓库和邮政业、批发和零售业、住宿和餐饮业、金融业、房地产业等有关。 关键词:第三产业,批发和零售业,金融业,房地产业。 1、引言 改革开放以前,在计划经济体制下,我国一直重视发展第一、二产业,忽视了第三产业的发展。近年来,第三产业加快了发展的步伐,改善了我国人民的生活水平,为我国的经济增长作出了突出贡献,成为整个国民经济发展的重要力量
2、为了弄清第三产业的发展,我从计量经济学的角度出发,首先要建立一个经济模型,然后用最小二乘法来判断它的拟合程度高低,最后进行判断分析和修正。在建模时,根据“经典假设”做了以下处理:经济回归模型是线性的。主要采集的样本是1978年以后的,因为改革开放以后,我国的经济运行机制有了极大的改变,第三产业快速发展,并逐渐成为我国经济的主要成分,因此用这一时期的样本更能反映这种变化。模型中将第三产业作为被解释变量,根据经验引入交通运输、仓储和邮政业、批发和零售业、住宿和餐饮业、金融业、房地产业对模型进行回归分析,以求能使模型具有更高的可操作性。 2、模型 2.1、数据(单位:万亿元) 第三
3、产业Y 年 份 交通运输、 批发和 住宿和 金融业X4 房地产业X5 仓储和邮政业X1 零售业X2 餐饮业X3 1978 872.5 182.0 242.3 44.6 68.2 79.9 1979 878.9 193.7 200.9 44.0 66.9 86.3 1980 982.0 213.4 193.8 47.4 75.0 96.4 1981 1076.6 220.7 231.1 54.1 79.8 99.
4、9 1982 1163.0 246.9 171.4 62.3 114.8 110.8 1983 1338.1 274.9 198.7 72.5 149.0 121.8 1984 1786.3 338.5 363.5 96.8 203.9 162.3 1985 2585.0 421.7 802.4 138.3 259.9 215.2 1986 2993.8 498.8 852.6 163.2 356.4 298.1 1987 3574.0 568.3 1059.6 187.1 450
5、0 382.6 1988 4590.3 685.7 1483.4 241.4 585.4 473.8 1989 5448.4 812.7 1536.2 277.4 964.3 566.2 1990 5888.4 1167.0 1268.9 301.9 1017.5 662.2 1991 7337.1 1420.3 1834.6 442.3 1056.3 763.7 1992 9357.4 1689.0 2405.0 584.6 1306.2 1101.3 1993 11915.7 2
6、174.0 2816.6 712.1 1669.7 1379.6 1994 16179.8 2787.9 3773.4 1008.5 2234.8 1909.3 1995 19978.5 3244.3 4778.6 1200.1 2798.5 2354.0 1996 23326.2 3782.2 5599.7 1336.8 3211.7 2617.6 1997 26988.1 4148.6 6327.4 1561.3 3606.8 2921.1 1998 30580.5 4660.9 691
7、3.2 1786.9 3697.7 3434.5 1999 33873.4 5175.2 7491.1 1941.2 3816.5 3681.8 2000 38714.0 6161.0 8158.6 2146.3 4086.7 4149.1 2001 44361.6 6870.3 9119.4 2400.1 4353.5 4715.1 2002 49898.9 7492.9 9995.4 2724.8 4612.8 5346.4 2003 56004.7 7913.2 11169.5 312
8、6.1 4989.4 6172.7 2004 64561.3 9304.4 12453.8 3664.8 5393.0 7174.1 2005 74919.3 10666.2 13966.2 4195.7 6086.8 8516.4 2006 88554.9 12183.0 16530.7 4792.6 8099.1 10370.5 2007 111351.9 14601.0 20937.8 5548.1 12337.5 13809.7 2008 131340.0 16362.5 26182.3
9、 6616.1 14863.3 14738.7 2009 147642.1 17057.7 28984.5 7118.2 17727.6 18654.7 2.2模型估计 2.2.1第三产业与交通运输、仓储和邮政业的线性关系 假定第三产业与运输业、仓储和邮政业存在线性关系,,其中为随机误差项,用Eviews软件得到第三产业与交通运输、仓储和邮政业的散点图如下: 由上图可以看出第三产业与交通运输、仓储和邮政业呈线性关系。 在Eviews软件下,得到第三产业与交通运输、仓储和邮政业回归结果如下: Dependent Variable: Y Met
10、hod: Least Squares Date: 05/19/12 Time: 16:12 Sample: 1 38 Included observations: 32 Variable Coefficient Std. Error t-Statistic Prob. C -3543.417 1101.518 -3.216850 0.0031 X1 7.897584 0.164425 48.03160 0.0000
11、 R-squared 0.987163 Mean dependent var 31876.95 Adjusted R-squared 0.986735 S.D. dependent var 40189.28 S.E. of regression 4628.694 Akaike info criterion 19.77840 Sum squared resid 6.43E+08 Schwarz criterion 19.87001 Log likelihood -314.4544 Hannan-Qui
12、nn criter. 19.80876 F-statistic 2307.035 Durbin-Watson stat 0.381884 Prob(F-statistic) 0.000000 由上表可知,第三产业总值与交通运输、仓储和邮政业变化的一元线性回归方程为:Y=-3543.417+7.897584X1,拟合系数=0.987163,从回归结果可以看出,模型拟合度很好,可决系数很高,表明交通运输、仓储和邮政业对第三产业总值有显著影响。 2.2.2第三产业与批发和零售业的线性关系 假定第三产业
13、与批发和零售业存在线性关系,,其中为随机误差项,用Eviews软件分析它们之间的关系得到散点图如下: 可以看出它们呈线性关系。 在Eviews软件下,得到第三产业与批发和零售业回归结果如下: Dependent Variable: Y Method: Least Squares Date: 05/19/12 Time: 16:37 Sample: 1 38 Included observations: 32 Variable Coefficient Std. Error t-S
14、tatistic Prob. C -1908.629 553.2654 -3.449753 0.0017 X2 5.196721 0.055324 93.93298 0.0000 R-squared 0.996611 Mean dependent var 31876.95 Adjusted R-squared 0.996499 S.D. dependent var 40189.28 S.E. of regression 2378.131 Aka
15、ike info criterion 18.44648 Sum squared resid 1.70E+08 Schwarz criterion 18.53809 Log likelihood -293.1437 Hannan-Quinn criter. 18.47684 F-statistic 8823.405 Durbin-Watson stat 0.583250 Prob(F-statistic) 0.000000 由上表可得第三产业总值与批发和零售业变化的一元
16、线性回归方程为:Y=-1908.629+5.196721X2,拟合系数=0.996611,从回归结果可以看出,模型拟合度很好,可决系数很高,表明批发和零售业变化对第三产业总值有显著影响。 2.2.3第三产业与住宿和餐饮业的线性关系 仍然假定它们之间存在线性关系,,为随机误差项,用Eviews软件分析它得到第三产业与批发与住宿和餐饮业回归结果如下: Dependent Variable: Y Method: Least Squares Date: 05/19/12 Time: 16:50 Sample: 1 38 Included obs
17、ervations: 32 Variable Coefficient Std. Error t-Statistic Prob. C -1728.955 712.1898 -2.427661 0.0214 X3 19.68222 0.270507 72.76057 0.0000 R-squared 0.994365 Mean dependent var 31876.95 Adjusted R-squared 0.99
18、4177 S.D. dependent var 40189.28 S.E. of regression 3066.676 Akaike info criterion 18.95504 Sum squared resid 2.82E+08 Schwarz criterion 19.04665 Log likelihood -301.2806 Hannan-Quinn criter. 18.98540 F-statistic 5294.101 Durbin-Watson stat 0.516394 Prob(F-stat
19、istic) 0.000000 由上表可得第三产业总值与住宿和餐饮业变化的一元线性回归方程为:Y=-1728.955+19.68222X3,拟合系数=0.994365,从回归结果可以看出,模型拟合度很好,可决系数很高,表明住宿和餐饮业变化对第三产业总值有显著影响。 2.2.4第三产业与金融业之间的线性关系 假定第三产业与金融业之间存在线性关系,,为随机误差项,用Eviews软件分析它们之间的关系得到散点图如下: 由上图可知,第三产业与金融业之间呈一定的线性关系。在Eviews软件下,得到第三产业与批发与金融业回归结果如下:
20、 Dependent Variable: Y Method: Least Squares Date: 05/19/12 Time: 17:00 Sample: 1 38 Included observations: 32 Variable Coefficient Std. Error t-Statistic Prob. C 649.3815 1551.738 0.418487 0.6786 X4 9.056489 0.281299
21、 32.19519 0.0000 R-squared 0.971871 Mean dependent var 31876.95 Adjusted R-squared 0.970934 S.D. dependent var 40189.28 S.E. of regression 6851.795 Akaike info criterion 20.56287 Sum squared resid 1.41E+09 Schwarz criterion 20.65448 Log likeliho
22、od -327.0059 Hannan-Quinn criter. 20.59324 F-statistic 1036.531 Durbin-Watson stat 0.376238 Prob(F-statistic) 0.000000 由上表可得第三产业总值与住宿和餐饮业变化的一元线性回归方程为:Y=649.3815+9.056489X4,拟合系数=0.971871,从回归结果可以看出,模型拟合度较好,可决系数较高,表明金融业变化对第三产业总值有显著影响。 2.2.5第三产业与房地产业之间的线性关系
23、 假定第三产业与房地产业之间存在线性关系,,为随机误差项,用Eviews软件分析得到第三产业与房地产业回归结果如下: Dependent Variable: Y Method: Least Squares Date: 05/19/12 Time: 17:07 Sample: 1 38 Included observations: 32 Variable Coefficient Std. Error t-Statistic Prob. C
24、 1411.322 645.0973 2.187766 0.0366 X5 8.320696 0.107676 77.27539 0.0000 R-squared 0.995001 Mean dependent var 31876.95 Adjusted R-squared 0.994835 S.D. dependent var 40189.28 S.E. of regression 2888.429 Akaike info criterion 18.83527 Sum squared
25、resid 2.50E+08 Schwarz criterion 18.92688 Log likelihood -299.3644 Hannan-Quinn criter. 18.86564 F-statistic 5971.485 Durbin-Watson stat 2.241768 Prob(F-statistic) 0.000000 由上表可得第三产业总值与房地产业变化的一元线性回归方程为:Y=1411.322+8.320696X5,拟合系数=0.995001,从回归结果可以看
26、出,模型拟合度很好,可决系数很高,表明房地产业变化对第三产业总值有显著影响。 2.3用Eviews软件对影响对第三产业的单因素的单位根检验 2.3.1 用Eviews软件来检验交通运输、仓储和邮政业的单整性水平 Null Hypothesis: X1 has a unit root Exogenous: None Lag Length: 3 (Fixed) t-Statistic Prob.* Augmented Dickey-Fuller test st
27、atistic -4.029971 0.0031 Test critical values: 1% level -3.109582 5% level -2.043968 10% level -1.597318 *MacKinnon (1996) one-sided p-values. Warning: Probabilities and critical values calculated for 20 observations and may not be accurate
28、for a sample size of 5 Augmented Dickey-Fuller Test Equation Dependent Variable: D(X1) Method: Least Squares Date: 05/19/12 Time: 22:30 Sample (adjusted): 9 33 Included observations: 5 after adjustments Variable Coefficient Std.
29、Error t-Statistic Prob. X1(-1) -11.61761 2.882803 -4.029971 0.1548 D(X1(-1)) -29.25747 7.034068 -4.159395 0.1502 D(X1(-2)) -46.04027 11.35384 -4.055038 0.1539 D(X1(-3)) 272.2184 66.44825 4.096698 0.1524 R-squared 0.997760 Mean de
30、pendent var 648.2904 Adjusted R-squared 0.991039 S.D. dependent var 516.1230 S.E. of regression 48.85833 Akaike info criterion 10.60629 Sum squared resid 2387.136 Schwarz criterion 10.29384 Log likelihood -22.51572 Hannan-Quinn criter. 9.767705
31、 由上面的图表数据,-4.029771<-3.109582, 满足在小于1%条件下,不存在单位根,所以拒绝原假设,即交通运输、仓储和邮政业原水平条件下是稳定的。 2.3.2 用Eviews软件来检验批发和零售业的单整性水平 Null Hypothesis: X2 has a unit root Exogenous: None Lag Length: 3 (Fixed) t-Statistic Prob.* Augmented Dickey-Fuller test
32、 statistic 2.046926 0.9703 Test critical values: 1% level -3.109582 5% level -2.043968 10% level -1.597318 *MacKinnon (1996) one-sided p-values. Warning: Probabilities and critical values calculated for 20 observations and may not be accura
33、te for a sample size of 5 Augmented Dickey-Fuller Test Equation Dependent Variable: D(X2) Method: Least Squares Date: 05/19/12 Time: 23:25 Sample (adjusted): 9 33 Included observations: 5 after adjustments Variable Coefficient St
34、d. Error t-Statistic Prob. X2(-1) 0.115575 0.056463 2.046926 0.2893 D(X2(-1)) 1.449616 0.291504 4.972876 0.1263 D(X2(-2)) -0.931448 0.522931 -1.781206 0.3257 D(X2(-3)) -0.749556 0.540166 -1.387640 0.3975 R-squared 0.985953 Mean d
35、ependent var 671.3495 Adjusted R-squared 0.943813 S.D. dependent var 662.1334 S.E. of regression 156.9502 Akaike info criterion 12.94030 Sum squared resid 24633.35 Schwarz criterion 12.62785 Log likelihood -28.35074 Hannan-Quinn criter. 12.10171
36、 由上面的图表数据, -1.597318<2.046926,满足在小于10%的条件下,存在单位根,所以接受原假设,即批发和零售业是不稳定的。 2.3.3 用Eviews软件来检验住宿和餐饮业的单整性水平 Null Hypothesis: X3 has a unit root Exogenous: None Lag Length: 3 (Fixed) t-Statistic Prob.* Augmented Dickey-Fuller test statisti
37、c 1.852630 0.9617 Test critical values: 1% level -3.109582 5% level -2.043968 10% level -1.597318 *MacKinnon (1996) one-sided p-values. Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a
38、sample size of 5 Augmented Dickey-Fuller Test Equation Dependent Variable: D(X3) Method: Least Squares Date: 05/20/12 Time: 08:37 Sample (adjusted): 9 33 Included observations: 5 after adjustments Variable Coefficient Std. Error
39、 t-Statistic Prob. X3(-1) 0.161339 0.087086 1.852630 0.3151 D(X3(-1)) 0.451425 0.117160 3.853082 0.1617 D(X3(-2)) -0.589812 0.937790 -0.628938 0.6426 D(X3(-3)) -0.203204 0.431167 -0.471289 0.7196 R-squared 0.996895 Mean dependent
40、var 198.7134 Adjusted R-squared 0.987580 S.D. dependent var 203.4264 S.E. of regression 22.67090 Akaike info criterion 9.070604 Sum squared resid 513.9697 Schwarz criterion 8.758154 Log likelihood -18.67651 Hannan-Quinn criter. 8.232020 由上表
41、可知, -1.597318<1.852630, 满足在小于10%条件下,存在单位根,所以接受原假设,即住宿和餐饮业是不稳定的。 2.3.4 用Eviews软件来检验金融业的单整性水平 Null Hypothesis: X4 has a unit root Exogenous: None Lag Length: 3 (Automatic based on SIC, MAXLAG=3) t-Statistic Prob.* Augmented Dickey-Fuller t
42、est statistic -22.80003 0.0001 Test critical values: 1% level -3.109582 5% level -2.043968 10% level -1.597318 *MacKinnon (1996) one-sided p-values. Warning: Probabilities and critical values calculated for 20 observations and may not be acc
43、urate for a sample size of 5 Augmented Dickey-Fuller Test Equation Dependent Variable: D(X4) Method: Least Squares Date: 05/20/12 Time: 08:44 Sample (adjusted): 9 33 Included observations: 5 after adjustments Variable Coefficient
44、 Std. Error t-Statistic Prob. X4(-1) -0.018413 0.000808 -22.80003 0.0279 D(X4(-1)) -0.916195 0.007588 -120.7351 0.0053 D(X4(-2)) 2.738914 0.013850 197.7527 0.0032 D(X4(-3)) 0.507025 0.007901 64.17010 0.0099 R-squared 0.999995 Mea
45、n dependent var 327.3802 Adjusted R-squared 0.999981 S.D. dependent var 292.5052 S.E. of regression 1.270666 Akaike info criterion 3.307521 Sum squared resid 1.614591 Schwarz criterion 2.995071 Log likelihood -4.268802 Hannan-Quinn criter. 2.468937
46、 由上表可知,-22.80003 <-3.109582, 满足在小于1%条件下,不存在单位根,所以拒绝原假设,即金融业是原条件水平下是很稳定的。 2.3.5用Eviews软件来检验房地产业的单整性水平 Null Hypothesis: X5 has a unit root Exogenous: None Lag Length: 3 (Fixed) t-Statistic Prob.* Augmented Dickey-Fuller test stat
47、istic 1.011106 0.8862 Test critical values: 1% level -3.109582 5% level -2.043968 10% level -1.597318 *MacKinnon (1996) one-sided p-values. Warning: Probabilities and critical values calculated for 20 observations and may not be accurate fo
48、r a sample size of 5 Augmented Dickey-Fuller Test Equation Dependent Variable: D(X5) Method: Least Squares Date: 05/20/12 Time: 08:55 Sample (adjusted): 9 33 Included observations: 5 after adjustments Variable Coefficient Std. Er
49、ror t-Statistic Prob. X5(-1) 0.194321 0.192187 1.011106 0.4965 D(X5(-1)) 0.629237 0.902650 0.697100 0.6124 D(X5(-2)) -0.649425 2.220917 -0.292413 0.8189 D(X5(-3)) -0.230146 2.157418 -0.106677 0.9323 R-squared 0.999931 Mean depend
50、ent var 480.6340 Adjusted R-squared 0.999724 S.D. dependent var 518.3688 S.E. of regression 8.610336 Akaike info criterion 7.134366 Sum squared resid 74.13789 Schwarz criterion 6.821916 Log likelihood -13.83591 Hannan-Quinn criter. 6.295782 由上表
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4009-655-100 投诉/维权电话:18658249818