ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:171.50KB ,
资源ID:9251494      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9251494.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高考数学难点突破_难点07__奇偶性与单调性(一).doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高考数学难点突破_难点07__奇偶性与单调性(一).doc

1、难点7 奇偶性与单调性(一) 函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象. ●难点磁场 (★★★★)设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数. ●案例探究 [例1]已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当0

2、奇偶性、单调性的判定以及运算能力和逻辑推理能力.属★★★★题目. 知识依托:奇偶性及单调性定义及判定、赋值法及转化思想. 错解分析:本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得. 技巧与方法:对于(1),获得f(0)的值进而取x=-y是解题关键;对于(2),判定的范围是焦点. 证明:(1)由f(x)+f(y)=f(),令x=y=0,得f(0)=0,令y=-x,得f(x)+f(-x)=f()=f(0)=0.∴f(x)=-f(-x).∴f(x)为奇函数. (2)先证f(x)在(0,1)上单调递减. 令0

3、-f(-x1)=f() ∵00,1-x1x2>0,∴>0, 又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0 ∴x2-x1<1-x2x1, ∴0<<1,由题意知f()<0, 即f(x2)

4、的基本应用以及对复合函数单调性的判定方法.本题属于★★★★★级题目. 知识依托:逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题. 错解分析:逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱. 技巧与方法:本题属于知识组合题类,关键在于读题过程中对条件的思考与认识,通过本题会解组合题类,掌握审题的一般技巧与方法. 解:设0

5、由f(2a2+a+1)3a2-2a+1.解之,得0

6、关键在于:既把握复合过程,又掌握基本函数. (2)加强逆向思维、数形统一.正反结合解决基本应用题目,下一节我们将展开研究奇偶性、单调性的应用. ●歼灭难点训练 一、选择题 1.(★★★★)下列函数中的奇函数是( ) A.f(x)=(x-1) B.f(x)= C.f(x)= D.f(x)= 2.(★★★★★)函数f(x)=的图象( ) A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.关于直线x=1对称 二、填空题 3.(★★★★)函数f(x)在R上为增函数,则y=f(|x+1|)的一个单调递减区间是______

7、 4.(★★★★★)若函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)=0 (01). (1)证明:函数f(x)在(-1,+∞)上为增函数. (2)用反证法证明方程f(x)=0没有负数根. 6.(★★★★★)求证函数f(x)=在区间(1,+∞)上是减函数. 7.(★★★★)设函数f(x)的定义域关于原点对称且满足:(i)f(x1-x2)=; (ii)存在正常数a使f(a)=1.求证: (1)f(x)是

8、奇函数. (2)f(x)是周期函数,且有一个周期是4a. 8.(★★★★★)已知函数f(x)的定义域为R,且对m、n∈R,恒有f(m+n)=f(m)+f(n)-1,且 f(-)=0,当x>-时,f(x)>0. (1)求证:f(x)是单调递增函数; (2)试举出具有这种性质的一个函数,并加以验证. 参考答案 难点磁场 (1)解:依题意,对一切x∈R,有f(x)=f(-x),即+aex.整理,得(a-) (ex-)=0.因此,有a-=0,即a2=1,又a>0,∴a=1 (2)证法一:设0<x1<x2,则f(x1)-f(x2)= 由x1>0,x2>0,x2>x1,∴>0

9、1-e<0, ∴f(x1)-f(x2)<0,即f(x1)<f(x2) ∴f(x)在(0,+∞)上是增函数 证法二:由f(x)=ex+e-x,得f′(x)=ex-e-x=e-x·(e2x-1).当x∈(0,+∞)时,e-x>0,e2x-1>0. 此时f′(x)>0,所以f(x)在[0,+∞)上是增函数. 歼灭难点训练 一、1.解析:f(-x)= =-f(x),故f(x)为奇函数. 答案:C 2.解析:f(-x)=-f(x),f(x)是奇函数,图象关于原点对称. 答案:C 二、3.解析:令t=|x+1|,则t在(-∞,-1上递减,又y=f(x)在R上单调递增,∴y=f(|x+

10、1|)在(-∞,-1上递减. 答案:(-∞,-1 4.解析:∵f(0)=f(x1)=f(x2)=0,∴f(0)=d=0.f(x)=ax(x-x1)(x-x2)=ax3-a(x1+x2)x2+ax1x2x, ∴b=-a(x1+x2),又f(x)在[x2,+∞单调递增,故a>0.又知0<x1<x,得x1+x2>0, ∴b=-a(x1+x2)<0. 答案:(-∞,0) 三、5.证明:(1)设-1<x1<x2<+∞,则x2-x1>0, >1且>0, ∴>0,又x1+1>0,x2+1>0 ∴>0, 于是f(x2)-f(x1)=+ >0 ∴f(x)在(-1,+∞)上为递增函数. (2

11、证法一:设存在x0<0(x0≠-1)满足f(x0)=0,则且由0<<1得0<-<1,即<x0<2与x0<0矛盾,故f(x)=0没有负数根. 证法二:设存在x0<0(x0≠-1)使f(x0)=0,若-1<x0<0,则<-2,<1,∴f(x0)<-1与f(x0)=0矛盾,若x0<-1,则>0, >0,∴f(x0)>0与f(x0)=0矛盾,故方程f(x)=0没有负数根. 6.证明:∵x≠0,∴f(x)=, 设1<x1<x2<+∞,则. ∴f(x1)>f(x2),故函数f(x)在(1,+∞)上是减函数.(本题也可用求导方法解决) 7.证明:(1)不妨令x=x1-x2,则f(-x)=f

12、x2-x1)= =-f(x1-x2)=-f(x).∴f(x)是奇函数. (2)要证f(x+4a)=f(x),可先计算f(x+a),f(x+2a). ∵f(x+a)=f[x-(-a)]=. ∴f(x+4a)=f[(x+2a)+2a]==f(x),故f(x)是以4a为周期的周期函数. 8.(1)证明:设x1<x2,则x2-x1->-,由题意f(x2-x1-)>0, ∵f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1=f(x2-x1)+f(-)-1=f[(x2-x1)-]>0, ∴f(x)是单调递增函数. (2)解:f(x)=2x+1.验证过程略.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服