ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:401.50KB ,
资源ID:9243422      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9243422.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(反比例函数与几何综合(讲义及答案).doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

反比例函数与几何综合(讲义及答案).doc

1、扫一扫 看视频 对答案 反比例函数与几何综合(讲义) Ø 课前预习 1. 如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,),反比例函数的图象与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是________. 提示: ①抓住关键点D(关键点是指函数图象与几何图形交点); ②几何特征、函数特征互转(借助点C纵坐标求解CO长,进而求解DB,BO长); ③由关键点D坐标求解k值. 2. 尝试证明以下反比例函数模型: 结论:S△OCD=S梯形ABCD 结论:AB

2、CD 结论:BD∥CE Ø 知识点睛 反比例函数与几何综合的处理思路 1. 从关键点入手.通过关键点坐标和横平竖直线段长的互相转化,可将函数特征与几何特征综合在一起进行研究. 2. 对函数特征和几何特征进行转化、组合,列方程求解.若借助反比例函数模型,能快速将函数特征转化为几何特征. 与反比例函数相关的几个模型,在解题时可以考虑调用. 结论:S矩形ABCO=2S△ABO=|k| 结论:S△OCD=S梯形ABCD 结论:AB=CD 结论:BD∥CE Ø 精讲精练 1. 如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y

3、轴正半轴上,,函数的图象与线段AB交于点M.若AM=BM,则直线AB的解析式为_______. 第1题图 第2题图 2. 正方形A1B1P1P2的顶点P1,P2在反比例函数(x>0)的图象上,顶点A1,B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为_________. 3. 如图,□ABCD的顶点A,B的坐标分别是A(-1,0),B(0,-2),顶点C,D在双曲线(x>0)上,边AD交y轴于点E,且四边形BCDE的面积

4、是△ABE面积的5倍,则k=_______. 4. 如图,将边长为10的等边三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线(k>0,x>0)上,则k的值为_________. 第4题图 第5题图 5. 如图,已知动点A在函数(x>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴、y轴于点P,Q.当QE:DP=4:9时,图中阴影部分的面积为_________. 6. 如图,等腰

5、直角三角形ABC的顶点A,C在x轴上,∠ACB=90°,AC=BC=,反比例函数(x>0)的图象分别与AB,BC交于点D,E.连接DE,当△BDE∽△BCA时,点E的坐标为______________. 第6题图 第7题图 7. 如图,A,B是双曲线(k>0)上的点,且A,B两点的横坐标分别为a,5a,直线AB交x轴于点C,交y轴于点D. 若S△COD=6,则k的值为_____________. 8. 如图,已知四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数(x<0)的图象上,

6、则k的值为_______. 第8题图 第9题图 9. 如图,A,B是双曲线上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为( ) A. B. C.3 D.4 10. 如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数(x<0)图象上一点,AO的延长线交函数(x>0,k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,连接CC′,交x轴于点B,连接AB,AA′,A′C′,若△ABC的面积等于6,则由线段AC,CC′,C′A′,A

7、′A所围成的图形的面积等于 ( ) A.8 B.10 C. D. 11. 如图,已知点A,C在反比例函数(a>0)的图象上,点B,D在反比例函数(b<0)的图象上,AB∥CD∥轴,AB,CD在轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a-b的值是________. 12. 如图,直线l:y=x+1与x轴、y轴分别交于A,B两点,点C与原点O关于直线l对称.反比例函数的图象经过点C,点P在反比例函数的图象上,且位于点C左侧,过点P作x轴、y轴的垂线,分别交直线l于M,N两点.则AN·BM的值为____________. 【参考答案】 Ø 课前预习 1. 2. 证明略 Ø 精讲精练 1. 2. 3. 12 4. 5. 6. 7. 8. -12 9. B 10. B 11. 6 12. 2

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服