ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:16.11KB ,
资源ID:9233631      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9233631.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(初中数学教学案例分析报告..docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初中数学教学案例分析报告..docx

1、初中数学教学案例分析 数学教学是数学活动的教学,使师生之间、学生之间交往互动与共同发展的过程。教师应该从学生的实际出发,创设有助于学生自主学习的问题情境,使其在学习的过程中发现问题、提出问题、解决问题。而在日常的教学中,一是刚给学生提出问题,学生还没来得及思考,就马上要求其回答,这样不仅浪费了学生课堂思考的时间,而且有效性很差。有的教师只对学生提出比较笼统的要求,学生不明白教师要他们干什么和要他们怎么干,这样,学生就失去了教师的有效指导。二是我们教师往往放手不够,包代替过多,学生在学习的过程中能够自主发现问题、提出的问题、解决的问题,往往是教师引导学生去说、甚至是教师呈现出来。 案例3 《

2、14.1.1变量》片段 请同学们看下列问题 问题一;汽车以60千米/时的速度匀速行驶,行驶里程为 s 千米,行驶时间为 t 小时。填下面的表。再试用含t的式子表示s。 t(小时) 1 2 3 4 5 s(千米) 师:哪位同学来填表? 生1:填好表格中的数据。 师:你怎么算出来的? 生1:路程=速度×时间 师:用含t的式子表示s 生1:s=60t 师:观察谁在变,谁没变? 生1:路程s、时间t在变,速度没变。 师:路程随时间的变化而变化。 问题二:每张电影票的售,如果早场售出票150张,日场售出205张,晚场售出310张,三场电

3、影票的票房收入各多少元?若设一场电影售出票 x 张,票房收入为 y 元,怎样用含 x 的式子表示 y ? 师:某同学你来解答 生2:早场票房收入为10×150=1500 日场票房收入为10×205=2050 晚场票房收入为10×310=3100 y= 10 x 师:观察谁在变,谁没变? 生2:x y在变,票价为10元没变 师:票房收入随售出票数的变化而变化。 问题三:在一根弹簧的下端挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律。如果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,怎样用含重物质量x(kg)的式子表示受力后的弹簧长度L(cm

4、)? 师:某同学你来解答 生3:L=10+0.5x。 师:怎么考虑的? 生3:每1千克重物使弹簧伸长0.5cm,挂重物质量xkg,受力后的弹簧长度0.5x,弹簧长原长为10cm,所以受力后的弹簧长度L=10+0.5x。 师:非常好,那么谁在变化? 学生齐答:x、L在变。 问题四:要画一个面积为10的圆,圆的半径应取多少?当圆的面积为20时呢?怎样用含圆面积s的式子表示圆的半径r呢? 过程略 问题五:用10 m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化?记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律。设长方形的边长为 x米,面

5、积为S平方米,怎样用含x的式子表示S? 过程略 教师根据得出的关系式归纳 变量:在一个变化过程中,数值发生变化的量为变量。 常量:在一个变化过程中,数值始终不变的量为常量。 分析:1、缺少学生自主探索、动手实验的过程,比如问题三、四、五。 2、这种问答式的讲课方式,表面上看教师提出的问题学生都对答如流,没有任何障碍,但结果学生是否掌握了问题所在,学生的思维是否被激起?本应是学生发现的现象、能够提出的问题、可以总结的规律,只是让个别的学生来说、甚至是教师包办代替讲出来。得变量、常量概念时,怕学生不理解又在反复重复已得到的规律。 3、由于一直是教师在领着学生走,所以学生数学思考

6、的时间不充分,一些在思维方面的问题没有暴露出来。比如说,问题四中半径与面积的关系表述,实际中可能会有相当一部分学生表示不出来或表示错误;问题三中受力后的弹簧长度是否可以任意伸长等。因此,要给学生一定的思考时间和思维空间,要减少“讲与听”,增加“说与做”,尝试“教与评” 4、教师课堂问题的设置价值不大,仅仅为本课服务,教师没有真正理解编者的意图。以上五个问题是教材提供的素材,五个问题中都含有变量之间的的单值对应关系,通过讨论这些问题,不仅可以引出变量与常量的概念,而且也为后面引出变量间的单值对应关系进而学习函数的定义、用函数观点看方程(组)与不等式作了铺垫。变量之间的的单值对应关系,包括变量的

7、取值限制教师没有讲出来。 修改:1、对于问题一和问题二的解决学生们有知识基础,可以自行解决,所以教学中,呈现问题一和问题二安排学生独立完成。之后追问:“根据自己的解题过程,你有什么发现?能归纳一下吗?”归纳①有两个量在变化,有不变的量(数值)。②一个量变化另一个量随着在变化。③当一个量取一个确定的值时,另一个量的值随之确定。④当两个变化的量中一个量的值确定了,它就是一个一元一次方程。 2、问题三对于部分学生在理解上稍有困难,教师可以借助于实物演示,有条件的可以以小组为单位实物操作,在教师的指导下改变并记录重物的质量,观察并记录弹簧长度的变化。这样学生在动手实验的基础上,发现受力后的弹簧长度

8、L=10+0.5x。此时教师可以追问:“在问题一和问题二中的发现还有吗?有新发现吗?”意在得出重量m的质量应该有限制,原因是弹簧的受力是有限度的。 3、有了问题三的探索过程,问题五完全可以放手让学生们以小组为单位、分工合作、独立完成。验证发现、得到新发现。 4、可以尝试让学生利用已有的经验编一道题,加强对所总结的理解。 世界是运动变化的,函数是研究运动变化的重要数学模型。函数从数量的角度反映变化规律的,而变化规律表现在变量(自变量与函数)之间的单值对应关系上,即通过数与形定量地描述这种对应关系。因此,函数是体现变化与对应思想的基本数学概念。所以教学中要加强概念教学,抓住概念的核心内涵,借

9、助实际问题情境,由具体到抽象地去认识它,站在数学的角度提出问题、解决问题。不能仅仅着眼于具体题目的解题过程,而应不断加深对相关数学思想方法的领会,从整体上认识问题的本质。数学思想方法是通过知识的载体来体现的,对于它们的认识需要有一个较长的过程,既需要教材的渗透,也需要教师的点拨,更需要学生在学习过程中的自身的感受与理解。数学思想方法是具体数学知识的灵魂,在学习的过程中对于学生的影响往往大于具体的数学知识。同时在真实、常态的课堂教学中,教师要高效地完成课堂教学任务,就必须注重对课堂提问的研究,所提的问题必须是有价值的、有启发性的、有一定难度的,整个课堂的问题设计必须遵循循序渐进的原则。 新课程标准将“学习过程”本身作为教学目标,不是让它服务于学习结果,而是希望学生通过数学活动的过程体验到学习数学的快乐,了解数学学习的意义,锻炼学生的意志,实现数学思考,达到问题解决,提升学生的情感与态度。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服