ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:1.15MB ,
资源ID:9232264      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9232264.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(有理数比较大小-.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

有理数比较大小-.doc

1、 优秀领先 飞翔梦想 成人成才 1.2.4 绝对值 第1课时 绝对值 【教学目标】 (一)知识技能 1. 使学生掌握有理数的绝对值概念及表示方法。 2. 使学生熟练掌握有理数绝对值的求法和有关计算问题。 (二)过程方法 1. 在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。 2. 能根据一个数的绝对值表示“距离”,初步理解绝对值的概念。 3. 给出一个数,能求它的绝对值。 (三)情感态度 从上节课学的相反数到本节的绝对值,使

2、学生感知数学知识具有普遍的联系性。 教学重点 给出一个数会求它的绝对值。 教学难点 绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数。 【情景引入】 问题:两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了. 我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离).这里的5叫做+5的绝对值,4叫做-4的绝对值. 【教学过程

3、 1.绝对值的定义: 我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值)。记作|a|。 例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。同样可知|―4|=4,|+1.7|=1.7。 2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道: (1)|+2|= ,= ,|+8.2|= ; (2)|0|= ; (3)|―3|= ,|―0.2|= ,|―8.2|= 。 概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在

4、原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a的绝对值的一般规律: (1)一个正数的绝对值是它本身; (2) 0的绝对值是0; (3) 一个负数的绝对值是它的相反数。 即:①若a>0,则|a|=a; ②若a<0,则|a|=–a; 或写成:。 ③若a=0,则|a|=0; 3.绝对值的非负性 由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0。 4.例题解析 例1:求下列各数的绝对值:,,

5、―4.75,10.5。 解:=;=;|―4.75|=4.75;|10.5|=10.5。 例2: 化简:(1); (2)。 解:(1) ; (2) 。 例3:计算:(1)|0.32|+|0.3|; (2)|–4.2|–|4.2|; (3)|–|–(–)。 分析:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到。在(3)中要注意区分绝对值符号与括号的不同含义。 解答:(1)0.62; (2)0; (3)。 解:|8|=8,|-8|=8,||=,|-|=,|0|=0,|6-|=6-,|-5|=5- 例5.

6、 ,求x。 分析:本题应用了绝对值的一个基本性质:互为相反数的两个数的绝对值相等。即或,由此可求出正确答案或。 解: 或 或 补充:一对相反数的绝对值相等。 【课堂作业】 1.在括号里填写适当的数: -|+3|=(    ); |(    )|=1, |(    )|=0; -|(    )|=-2. 2. 求+7,-2,,-8.3,0,+0.01,-,1的绝对值。 3. (1)绝对值是的数有几个?各是什么? (2)绝对值是0的数有几个?各是什么? (3)有没有绝对值是-2的数? (4)求绝对值小于4的所有整数。 4. 计算: (1)|-15|-|-6

7、 (2)|-0.24|+|-5.06|; (3)|-3|×|-2|; (4)|+4|×|-5|; (3)|-12|÷|+2|; (6)|20|÷|-| 5.检查了5个排球的重量(单位:克),其中超过标准重量记为正数,不足的记为负数,结果如下: -3.5,+0.7,-2.5,-0.6. 其中哪个球的重量最接近标准? 参考答案: 1. 3.5 -5 -3 ±1 0 ±2 2. |+7|=7,|-2|=2,||=,|-8.3|=8.3, |0|=0,|+0.01|=0.01,|-|=,|1|=1 3.

8、1)2个, (2)1个,0 (3)没有 (4)0,-1,1,-2,2,-3,3 4. (1) 9; (2)5.3; (3)6; (4)20; (3)6; (6)40 5. ∵|-3.5| > |-2.5| > |+0.7| > |-0.6| ∴第4个排球最接近标准。 【教学反思】 绝对值是中学数学中一个非常重要的概念,它具有非负性,在数学中有着广泛的应用。本节从几何与代数的角度阐述绝对值的概念,重点是让学生掌握求一个已知数的绝对值,对绝对值的几何意义、代数定义的导出、对“负数的绝对值是它的相反数”的理解是教学中的难点。 课堂上留给学生一定的提问时间,很容易暴露学生知识的缺陷,通过问题引导学生联想,大胆猜想,可以拓宽学生的知识面,增强知识的系统性,加深对课本知识的理解,培养学生的创新意识和发散思维。教师在课堂上也往往能收到意想不到的收获。 第 4 页 共 4 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服